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Abstract 
 

Whether it be for countries to improve the ability to undertake independent innovation or for enterprises to 

enhance their international competitiveness, tracing historical progression and forecasting future trends of 

technology evolution is essential for formulating technology strategies and policies. In this paper, we apply 

co-classification analysis to reveal the technical evolution process of a certain technical field, using co-word 

analysis to extract implicit or unknown patterns and topics, and main path analysis to discover significant 

clues about technology hotspots and development prospects. We illustrate this hybrid approach with 3D 

printing, referring to various technologies and processes used to synthesize a three-dimensional object. 

Results show how our method offers technical insights and traces technology evolution pathways, and then 

help decision-makers guide technology development. 
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Introduction 
 

Currently, fierce market competition drives decision makers to identify possible directions and 

promising options for technology emergence—to help choose the right path for further R&D plans and 

research activities. The ability to analyze and monitor the history and the current stage of a particular 

technology is considered a critical asset for gaining competitive advantage and capturing significant 

opportunities (Choi and Park 2009). Specifically, mastering technology evolution provides decision 

support for scientific research management, such as scheming science and technology development 

plans, optimizing government investment in R&D projects, helping forecast the trend of technology 

development, and discovering the key technological players positioned to pursue specific technologies. 
 

To reveal the process of a specific technology’s evolution, many researchers have attempted to identify 

current technology structures and to trace technological trends by performing patent analyses (J. Yoon 

and Kim 2011; Chang et al. 2010; Chen et al. 2005; Ganguli 2004; Lacasa et al. 2003). Early patent 

analytic methods mostly compared the numbers of patents assigned to different entities over time (e.g., 

nations, affiliations, inventors and technological fields) (von Wartburg et al. 2005; Bengisu 2003; 

Harhoff et al. 2003). Though such indicators provide a convenient way to draw the landscape, they 

cannot describe micro-level technology changes—especially for New and Emerging Science & 

Technologies (NESTs) that have limited history, fast changing, and developing, and have relatively 

limited applications in the marketplace (Robinson and Propp 2008). 
 

Compared to journal articles that bring most original research contributions to identify likely sources of 

information about future developments, patents represent disclosure of an invention, nominally at a later 

stage of innovation (Martino 2003). The interactions that represent previous knowledge underlying a 

specific inventive step among patents constitute the citation network. The related analyses, so called 

patent citation analyses, have been widely used for a broad range of applications, e.g., to investigate 

knowledge flows and technology diffusion (Liu et al. 2013; Murray 2002; Kajikawa and Takeda 2009; 

Sorenson et al. 2006; Duguet and MacGarvie 2004; Breitzman and Thomas 2002), to confirm rapid 

growing demands (Kajikawa et al. 2008), to explain the development trajectory of a specific technology 

(Verspagen 2007), and to track the role of science in a technological innovation (Shibata et al. 2010; 

Fleming and Sorenson 2004; M. S. Meyer 2001; Tijssen 2001; McMillan et al. 2000). It is helpful to 

extract patents to represent key technologies in a citation network and to help gain insights on the 

evolutionary pattern. Main path analysis (MPA) is one of the most attractive methods to determine the 

critical developing paths to discover citation trajectories (Hummon and Doreian 1989). However, 

previous studies ignore the essential role of patent families when constructing citation networks. This is 

essential because consolidating data into patent families not only helps avoid duplicate data retrieval 

during a search of patents across patent authorities’ databases, but it also helps show the geographical 

focus of the patentee and the patentee’s evaluation of the value of the patent (Simmons 2009). 
 

For such requirements, tech mining and patent citation tools have to be well tailored to capture the 

evolution pathways within a complex evolution progression. Tech mining is a multi-step process to 

analyze Science, Technology, and Innovation (ST&I) information resources by using text mining, 

visualization, and communication tools (Porter and Cunningham 2005). It provides empirical knowledge 

to help researchers and managers assess technological maturation (Porter et al. 1991). Particularly, 

during the process of identifying technology evolution pathways, tech mining offers a macro perspective 

covering technology development levels and future trends, and also makes R&D information accessible 
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for micro-level probes as needed. For example, tech mining techniques can be applied to analyze 

relations among specific actors and technologies within a given research-development-innovation 

system (Hopkins and Siepel 2013; Porter et al. 2002). Moreover, by combining with semantic-TRIZ, 

tech mining can help obtain better understanding of developmental trends over a relatively short time 

series (Vicente Gomila and Palop Marro 2013; Zhang et al. 2014b). 
 

We apply the tech mining approach to address several key questions concerning R&D activities—i.e., 

when, what, where, and who. Each question, in turn, can be answered through pertinent indicators. Some 

indicators are conceptually straightforward (e.g., the trend in research activity on this emerging 

technology). In this paper, we also extend tech mining methods to further analysis on patent 

classification and text, and we call them co-classification analysis and co-word analysis. The 

combination of these methods can, to some extent, mitigate their respective drawbacks and make use of 

their strengths in (1) obtaining technical core terms in domain areas; (2) identifying influential nodes of 

a directed citation network; and (3) discovering significant clues about technology hotspots now and 

technology development prospects for decision making. 
 

This paper is organized as follows: Section 2 overviews main ideas on how to combine co-classification 

analysis, co-word, and main path analysis as the foundation for this study; Section 3 details the process 

to identify patent evolution pathways; as an application of the suggested approach, some insights in 

evolution pathways for 3D printing are presented in Section 4; Finally, in Section 5, we conclude with 

the summary, discussion, and further research ideas. 
 

 

Methodology 
 

The main analytic approaches of this paper include co-classification analysis, co-word analysis, and 

main path analysis of patent citations. Therein, co-classification analysis and co-word analysis are 

mainly based on patent classifications, and titles and/or abstracts, respectively. Thus, we classify them 

into the scope of tech mining. The relationships among these three methods can be indicated as Figure 

1. In this process, we use a professional desktop text mining software—VantagePoint 

(http://www.theVantage-Point.com)—to help identify the fields from raw data and show results through 

a combination of statistics. 
 

Analytic Approaches Analytic Targets Analytic Aims 

 
Co-classification 

Analysis 

Patent Classification 

IPC/ CPC/MC/DC 

Reveal the technical evolution process of a 

certain technical field 

 
 

Co-word Analysis 
Patent Text 

Title/Abstract/Claims 

Extract implicit or unknown pattern and 

knowledge to analyze the evolution of technology 

 
 

Main Path Analysis 
Patent Citation 

Cited/Citing/Family 

Discover significant clues about technology 

hotspots and development prospects 
 

 

Figure 1. Main Framework of Analyzing Evolution Pathways. 
 
 

Co-classification Analysis based on Patent Classification 
 

Decision-making  activities  of  knowledge-intensive  enterprises  depend  heavily  on  the  successful 

classification of patents, which is a reflection of patent technology (Wu et al. 2010). Analyzing patent 
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classification information with some statistical methods along the time axis can reveal the technical 

evolution process of a certain field. It’s noteworthy that some researchers have utilized the structured 

information in patent descriptions to analyze the evolution of technology development and to forecast 

technology development trends (Jun and Lee 2012). 
 

Compared to the International Patent Classification (IPC), the Cooperative Patent Classification (CPC), 

is a new classification (in effect since January 2013). CPC covers all EPO and U.S. classified documents. 

The CPC system is based on the IPC structure, considering also three classifications: The European 

Classification System (ECLA), the In Computer Only (ICO) code, and the U.S. Patent Classification 

(USPC). This classification contains 250,000 classes—the highest number of subdivisions; thus it is the 

most granular and precise classification among those in the English versions (Montecchi et al. 2013). 

Therefore, employing the CPC allows analysis of the parallel development with unprecedented 

discernment, which so far has been rarely used (Mueller et al. 2015). In this paper, there are three steps 

to conduct co-classification analysis based on CPCs. 
 

The first step is to build the co-classification matrix. As we know, most patents are related to more than 

one technology field, so as to belong to multiple patent classifications in one classification system. Thus, 

if one patent has 6 CPCs in the patent application document, we call the co-occurrence of these 6 CPCs 

a co-classification relationship. As a result, we can then make the CPC co-classification matrix based 

on the co-occurrence of CPCs. 
 

The second step is to standardize the co-classification matrix. Different from Salton's cosine and the 

Pearson correlation, the Jaccard index abstracts from the shape of the distributions and focuses on only 

the intersection and the sum of the two sets (Leydesdorff 2008). Therefore, the Jaccard coefficient 

appears to offer a better choice to deal with the co-citation or, more generally, the co-occurrence-matrix. 

In this paper, we apply the Jaccard coefficient to carry on standardization processing for the co- 

classification matrix. The rows and columns of the matrix are composed of the frequencies that sub- 

technologies share in one patent according to its CPCs. As a result, we can then calculate the intensity 

matrix whose elements measure the diversity among technologies of the co-classification affinity matrix, 

shown as Table 1. 
 

Table 1. The co-classification intensity matrix. 
 

CPC1 CPC2 … CPCn 

CPC1 C11 C12 … C1n 

CPC2 C21 C22 … C2n 

… … … … … 

CPCn Cn1 Cn2 … Cnn 

 

 
The formula of calculation of the co-classification intensity matrix is as follows: 

 

𝐶𝑜𝐶�� �� 𝐶𝑜𝐶−𝐶𝑜𝐶−𝐶𝑜𝐶 

 

(1) 

� � �� 

In formula (1), Cij  indicates the co-classification intensity between two technological classifications 

CPCi and CPCj, and the value ranges from 0 to 1 -- the bigger the number is, the stronger the similarity 

between them. CoCij is the frequency of co-occurrence between CPCi and CPCj, while CoCi and CoCi 

separately indicate the individual frequencies of CPCi and CPCj. 
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The third step is to construct a technology network based on the Girvan-Newman algorithm that is aimed 

to detect communities by progressively removing edges from the original network. After getting the co- 

classification matrix of technology intensity, we transform it into a network. Generally, we think the 

main classifications are located in a max-connected network, which presents a visual, unambiguous 

technology network. Subsequently, we adopt the Girvan-Newman algorithm (Girvan and Newman 2002) 

to generate the sub-networks with maximum connectivity, but with less relation among the different 

sub-networks. 
 

Co-word Analysis based on Patent Textual Information 
 

Co-classification offers an effective way to present the technical evolution process of a certain technical 

field. However, using patent classification analysis makes it difficult to understand the detailed process 

of technical evolution, failing to penetrate the patent text; so results often tend to be macroscopic, 

superficial, and not intuitive. Text mining techniques not only help structure the patent landscape for 

topical analyses, but also facilitate other analyses, such as patent classification, organization, knowledge 

sharing, and prior art searches (Tseng et al. 2007). Therefore, in this paper, text mining techniques are 

introduced to analyze such a corpus to extract intelligence regarding potential technological evolution. 
 

One way of monitoring the trend of a technology is to trace the frequency of specific terms within a 

given research area. These technical terms are extracted from the abstract fields with special attention 

to growth in frequency. Additionally, calculating textual similarity based on shared terms goes deeper, 

which is also related to strong citation links and prior art analysis, infringement analysis, or patent 

mapping (Moehrle 2010). Some research indicates that the overall relationship among patents provides 

richer information and thus enables deeper analyses, since it takes more diverse keywords into account 

(B. Yoon and Park 2004). This method can be used in analyzing up-to-date trends of high technologies 

and identifying promising avenues for new product development. 
 

In a previous study, one solution to offer detailed insight depends on the ―terms‖ derived from Natural 

Language Processing (NLP) techniques; however, phrases and terms retrieved in this way are large and 

―noisy,‖ making them difficult to manually categorize. Using bibliometric and text mining techniques, 

this paper applies the semi-automatic ―Term Clumping‖ steps, which generate better term lists for 

achieving competitive technical intelligence (Zhang et al. 2014a). The selected steps of the term 

clumping process are shown as Figure 2. 
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NNNLLLPPP  

PPPrrroooccceeessssss iiinnnggg  

Merge Tile and Abstract field into the combined fields 
 

 
 

Extract single words & multi-word phrases by NLP techniques 
 

 
 
 
 
 

TTTeeerrrmmm 

CCCllleeeaaannnuuuppp  

Remove common words & 

terms via thesaurus 
 

 
Consolidate words & terms via 

Consolidate words & terms via 

fuzzy matching 

association rules 
Remove extreme words & terms 

 
 
 

TTTFFFIIIDDDFFF  

AAAnnnaaalllyyysss iii sss  

 
Apply Term Frequency Inverse Document Frequency (TFIDF) analysis 

 
 

Figure 2. The main process of Term Clumping 
 
 

First, we combine the abstract field and title field to compress more topical content into one field. We 

have focused on terms and phrases for quite a long time and have come to determine that in patent 

intelligence analysis, single words alone are too general in meaning or too ambiguous to indicate a clear 

concept, and that multi-word phrases could be more specific and desirable. Thus, except for the 

important single words, multi-word phrases are also extracted by NLP techniques with the help of the 

VantagePoint software. 
 

Second, we introduce four steps to clean and consolidate the extracted terms: (1) to remove common 

terms via a thesaurus, (e.g. technology, tool); (2) to consolidate terms via fuzzy matching, where stem 

and singular & plural forms of English words are recognized; (3) to remove extreme words, [i.e., very 

common (top 5%) and very rare (occurrence in single records) terms]; and (4) to consolidate terms via 

association rules, (i.e., sharing words and co-occurrence frequency). 
 

Third, we apply Term Frequency Inverse Document Frequency (TFIDF) analysis to screen the cleaned 

terms. Identifying the important terms to build the linkage with the evolution of a technology is not 

completely reliable on the terms’ occurrence frequency, but we instead take their emergence in different 

documents into consideration. The TFIDF involves adding an additional score to the terms that occur in 

the text under analysis, and can boost scores for neologisms, making them more even with the scores of 

other terms (Yatsko  2013).  Based  on  the classical  formula  (Salton  and Buckley 1988),  we log 

normalization to the TF to adjust the concise paragraph-size segments of text, such as abstracts. The 

formula we use in this paper is shown below: 

TFIDF�� = log(���,� ) ×𝐼��� = log(𝑛�,� ⁄∑ 𝑛�,� )×log(�⁄𝑑� ) (2) 
For each term i and document j, nk,j is the number of occurrences of term k in document j, D is the total 

number of documents in the corpus, and di is the number of documents in which term i occurs. 
 
 

Additionally, expert knowledge is then engaged to refine the outputs of the term clumping process, 

where  some  weakly  correlated  terms  are  removed  and  some  keywords  that  indicate  the  same 
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technological focus are merged. The final keywords reflecting the technology foci are obtained to 

construct a technology evolution roadmap, building on previous analysis experiences. 
 

Main Path Analysis based on Patent Citation Network 
 

Technological change typically follows along ordered and selective patterns, shaped jointly by 

technological and scientific principles, and economic and other societal factors (Fontana et al. 2009). 

Patent text analysis  reveals more  implicit information in detail  since its in-depth character and 

visualization methods help researchers understand or explain the results more intuitively and clearly. 

However, such methods are complex and time-consuming; and their results, sometimes, are even vague 

and not easy to further refine. Patent citation itself represents the evolutionary relations between patent 

technologies in a certain extent, so mining the patent citation network can study the process of 

technological evolution and make predictions through exploring such relations (Érdi et al. 2013). 
 

In patent citation analysis, a crucial factor is that patent citations can be included by the applicant and 

also can be added by the patent examiner responsible for judging the degree of novelty of the patent. 

Some scholars hold the view that examiner citations are ―disturbing noise‖ and should be removed from 

patent citations, since these citations sometimes cannot represent the technical spillover between 

inventors (Jaffe et al. 1993). However, some studies show that there are no evident differences of target 

area between the two kinds of citations (Alcácer et al. 2009), or that examiner citations to a patent are 

stronger predictors than inventor citations (Hegde and Sampat 2009). Our current research shows that 

patents included in an examiner citation network are more specialized in relatively narrow technological 

fields. Although examiner citation cannot reverse the patent structure of main pathways acquired by 

analyzing the applicant citation network, it contributes some unique patent nodes that have the potential 

to activate the process of technological innovation in a target technology field. Therefore, in this paper, 

we take both examiner citations and inventor citations into consideration to build a more comprehensive 

and effective patent citation network for MPA. 
 

The main path is defined as a path from a source vertex to a sink vertex with the highest traversal weights 

on its arcs (De Nooy et al. 2011). Many researchers have used MPA to explore the path of technological 

development by using bibliographical citation data and/or patent citation data. In our study, four steps 

are conducted to obtain the critical technology trajectories. 
 

First, merge patents into record families. As mentioned above, a patent family is the collection of patents 

in different countries referring to the same technical topic (Ho et al. 2014). Citation behavior is different 

among patent authorities and between parent and child patents; thus, global technology trends cannot be 

understood with only the analysis of patent data issued by a single authority. For the sake of statistics, 

the first step is to merge patent documents of a family into a single family record. The family of patents 

is usually identified by the claim of priority or disclosure, and here, one patent family is marked by the 

earliest published patent. Meanwhile, all cited patents of a family’s members are merged to form the 

cited patents of the family record. 
 

Second, construct the patent citation network. A general directed network (also called a Bayesian 

Network) consists of vertices and arcs that link two vertices (nodes). A citation network is a standard 

directed network that can also be represented as a citation matrix. Its columns and rows stand for the 

nodes, and each value in the matrix is defined as the strength of citation between two nodes (Choi and 

Park 2009). While conducting MPA for a given field of technology based on the patent citation network, 

only citations between patents within the technology field need to be taken into consideration. These 
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effective citations are extracted from the merged family records. In the network, nodes stand for the 

individual family records, and arcs between two nodes are citations. 
 

Third, calculate the weights of each citation link. How to measure the weights of each citation link from 

a set of starting vertices to the ending vertices is an important step in MPA. Several indices have been 

proposed, and the most widespread algorithms, proposed by Hummon and Doreian, are Node Pair 

Projection Count (NPCC), Search Path Link Count (SPLC), and Search Path Nodes Pair (SPNP) 

(Hummon and Doreian 1989). In 2003, Batagelj proposed a new traversal count, namely the Search Path 

Count (SPC), concluding that SPC performs a bit better than SPLC and SPNP, because of its nice 

properties—even though these indices always obtain almost the same results (Batagelj 2003). However, 

subtle differences exist among them. In this paper, we do not elaborate on the pros and cons of applying 

each of the traversal counts but follow the recommendation and apply SPC throughout to count the 

weight of each citation link. 
 

Fourth, find main paths of the patent citation network. Based on previous phases, technology evolution 

pathways are finally constructed by identifying the important patents, which locate on the ―main 

trajectory‖ at different stages. After getting the SPC weight of each node, we need to choose an 

algorithm to figure out the main path. Most of the traditionally proposed algorithms represent a ―local‖ 

approach, which repeatedly chooses the link with the largest traversal count emanating from the current 

starting node. Such local algorithms highlight significance at a particular point in time and track the 

most significant citation link at every possible splitting point, whereas the global algorithm emphasizes 

the overall importance and delivers the path with the largest overall traversal count (Ho et al. 2014). In 

other words, in contrast to the local main path that highlights significance in local progress, the global 

main path emphasizes the overall importance in knowledge flow (Liu and Lu 2012). Nevertheless, both 

the local and the global main path may miss the links with the largest traversal count. Liu and colleagues 

introduced a new method called the ―key-route‖ to enhance MPA; this viewed a main path as an 

extension of a specific key route and began a search from both ends of that key route (Liu et al. 2013; 

Liu and Lu 2012). Based on the key-route algorithm, we extract several key routes to determine the most 

crucial paths in the overall development. The global key-route method not only provides multiple paths 

(from which we can find the knowledge diffusion trajectory comprehensively), but also contains almost 

all the important connections and makes the results much more comprehensive. In this paper, we conduct 

the global key-route method to obtain more technological insights. 
 

 

Case Study: 3D Printing 
 

The 3D printing technology is used for both prototyping and distributed manufacturing with applications 

in architecture, industrial design, and biotech (human tissue replacement). The development of 3D 

printing can be traced back to the mid-1980s. Charles Hull applied for a patent related to 

stereolithography, and the first commercial rapid prototyping technology, commonly known as 3D 

printing, emerged in 1985 (Hull 1986). Certainly, the benefits of 3D printing are manifold; for example, 

it may give rise to production revolution, stimulate creativity, and decrease our environmental problems. 

In view of these respects, we are eager to know what trend this technology will have in a few years 

through the path it follows. 
 

A wide range of patent databases has become available [e.g., Derwent Innovations Index (DII); the 

United  States  Patent  and  Trademark  Office  (USPTO)].  We  contend  that  Thomson  Innovation 
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(https://www.thomsoninnovation.com) brings together the world’s most comprehensive international 

patent coverage and powerful Intellectual Property (IP) analysis tools. Compared to the Thomson 

Innovation, DII lacks the citation of patent information and the USPTO lacks patent family tabulation; 

thus, we collect data from Thomson Innovation (that incorporates Derwent patent information). 
 

The search query we used is ―TABD= (((3D OR 3-D OR (3 ADJ dimension*) OR (three ADJ2 

dimension*) OR additive) NEAR (print* OR fabricat* OR manufactur* OR product*)))‖, which was 

directed to search the title and abstract fields. Besides, in consideration of the time lag for when patents 

are filed, we refined the publication period to 1985 through 2014, while we performed the search on 

January 9, 2016. Ultimately, we received 7,975 records. The reason for setting 1985 as the beginning 

year for the acknowledged and first published 3D printing related patent is that EP171069 was applied 

to the 3D system in 1985. 
 

In this stage, we first disassembled the IPC subclass of all targeted patents to get a glimpse of the 

technological area distribution. The result is that B29C (shaping or joining of plastics; shaping of 

substances in a plastic state, in general; after-treatment of the shaped products) is mentioned in 2,785 

patents, accounting for 34.92% of the total 3D patents. The result is followed by B22F (working metallic 

powder; manufacture of articles from metallic powder; making metallic powder), which occupies 9.78% 

of the dataset (780 records). G06F (electric digital data processing), H01L (semiconductor devices; 

electric solid state devices) and B41J (typewriters; selective printing mechanisms) take up the next 

highest proportion. Furthermore, we recombine the IPC categories to reflect a finer distribution of 

patents by introducing patent overlay mapping (Kay et al. 2014). What stands out among those of the 

key component research fields is ―Plastics‖—especially in plastics shaping. The Luminescent field 

follows—especially in metallic powder (see Figure 3—with larger nodes reflecting more patents). In 

fact, this result is in accordance with our subjective judgment. We can also note that the fields of 

Chemistry, Semiconductors, and Foods and Drugs warrant attention. 

 

 
 

 
Figure 3. Patent overlap mapping of 3D printing in 1985-2014 by research fields. 
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As there are high costs for patent application and maintenance, patents pursued in multiple countries 

tend to have higher technical advantage and perceived commercial potential. Therefore, we chose as our 

target sub-dataset the patent families that have multiple application countries to capture the leading 

countries with strong technological strength; only 28.20% of the 3D printing patents (2,249 records) are 

ultimately selected. Figure 4 uses the Aduna cluster map technique to compare the top ten priority 

countries and territories by measuring and visualizing ownership ranges to reflect a country’s patent 

performance as a whole. The number after the country code indicates the total number of corresponding 

assignee countries, and the linkages present the co-applied relationships among patent assignees 

between countries. This shows the United States (US) as the leading assignee country, followed by 

Germany (DE) and Japan (JP). Chinese patent assignees owned the most inventions (2,970 records), but 

only 82 inventions have applications in other countries too. We can discern that China’s assignees 

applied for most of the 3D patents in their home country, while the United States’ assignees would rather 

focus on the global impacts of 3D printing and apply for priority protection worldwide. Therefore, the 

United States has more advantages to win more potential markets’ shares for its competitive 

technological superiority. 
 

 
 

Figure 4. Top 10 priority countries of 3D printing, 1985–2014. 
 
 

In the early stage of technology development, a few powerful patentees play a vital role. Over the course 

of technology development, the market grows, competition grows fierce, and the leading organizations 

lose their absolute dominance. Table 2 shows the top 10 assignees of 3D printing for the period from 

1985 to 2014. When we take the whole of published 3D printing patents into consideration, it shows 3D 

System Inc. as the earliest company devoted to the research of 3D printing, yet it does not make an 

outstanding performance in terms of patent application numbers. In contrast, some Chinese patent 
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NO Patent Assignees (All) Records Patent Assignees (Multiple Family Country) Records 

1 Stratasys (US) 102 Stratasys (US) 56 

2 Xi'an Zkmt Electronic Technology 75 United Technologies (US) 56 

3 Seiko Epson (JP) 71 3D Systems (US) 45 

4 Matsushita Electric Works (JP) 69 Hewlett-Packard (US) 45 

5 United Technologies (US) 65 Cal Comp Electronics & Communications 41 

6 Print-Rite Unicorn Image Products (CN) 59 Kinpo Electronics (TW) 41 

7 Samsung Electronics (KR) 59 Samsung Electronics (KR) 41 

8 3D Systems (US) 58 Sanwei Int 3D Printing Technology (TW) 38 

9 Hewlett-Packard (US) 56 XYZprinting (TW) 37 

10 Chinese Acad Sci, Inst Chem (CN) 55 Massachusetts Inst Technology (US) 30 

 

assignees, (e.g. the Institute of Chemistry Chinese Academy of Sciences, Print-Rite Unicorn Image 

Products Co., Ltd of Zhuhai and Xi'an Zkmt Electronic Technology Equipment Co., Ltd) have a sudden 

increase in the number of 3D printing-related patents in 2014, which attracts our attention. However, 

when we turn to the multiple family country patents, the situation changes. Stratasys Inc., the well- 

known manufacturer of 3D printers and 3D production systems for office-based rapid prototyping and 

direct digital manufacturing solutions, keeps its leading role in both evaluation criteria. The top four 

assignees are all from the United States, making up 50% among the top assignees (including the 

Massachusetts Institute of Technology). Chinese assignees focus more on the domestic market. On the 

contrary, the assignees who come from the Taiwan region stand out for their multiple family country 

patents, which reveals that they have intention to pursue international markets. 

 
 

Table 2. Top 10 assignees of 3D printing during 1985–2014. 
 
 
 
 

 
Equipment (CN) 

 
 
 
 
 

(TW) 

 
 
 
 
 
 
 
 

 
As technology often advances, an ever-growing pace indicates different development tracks; therefore, it is 

necessary to consider the technology life cycle (TLC) when creating a distinct R&D strategy plan. The 

technology life cycle comprises a pattern of dynamic characteristics pertaining to technology, in which its 

innovative and economic outcomes change over time (Park and Heo 2013). A dominant approach is to 

analyze TLC using an S-shaped growth curve to model technological performance, either over time or in 

terms of cumulative R&D expenditures (Gao et al. 2013). The S-curve models adopted by this study are the 

Loglet Lab model (P. S. Meyer et al. 1999). We used Loglet Lab 2 software 

(http://phe.rockefeller.edu/LogletLab/2.0/) to analyze the growth curve on the accumulated number of 3D 

printing patents. Shown in Figure 5, we found that from 1985 to 2000 the patent counts were small and slowly 

increasing. 3D printing is becoming a hot topic again, with the strong growth in patenting implying 

tremendous investment in the development of 3D printing. Meanwhile, it shows that organizations perceive 

potential commercial value in 3D printing technology after 2005. It also shows that the midpoint occurred in 

2016, the life cycle was 21.4 years, and the saturation point was around 4,034 patents. Based on the logistic 

model of TLC (Yung et al. 1999) and preliminary analysis, we think 3D printing technology emerged during 

the period of 1985-2004, and entered the development growth stage from 2005, and we forecast it enters the 

maturity stage in 2016. 

http://phe.rockefeller.edu/LogletLab/2.0/)
http://phe.rockefeller.edu/LogletLab/2.0/)
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Figure 5. S-curve of 3D printing during 1985–2014. 
 
 

Based on the methodology we proposed to conduct co-classification analysis based on CPC information, we 

can map the sub-technology fields network of 3D printing during the period of 1985–2004 (shown as Figure 

6) and 2005–2014 (shown as Figure 7) using a software tool for analysis and visualization of large 

networks—Pajek (http://mrvar.fdv.uni-lj.si/pajek/). From Figure 6, we can see that there are three main sub- 

technology fields: (1) C12M-B81B-C22F-related fields (the Yellow Cluster), which mainly link to methods 

or devices of fabricating 3D objects and products; (2) D06M-D06L-C11D -related fields (the Green Cluster), 

which mainly relate to flexible materials and textiles technology; (3) C07D-C12N-C12R-related fields (the 

Red Cluster), which is mainly about organic materials applied in 3D printing materials. 
 

 
 

Figure 6. Sub-technology fields network of 3D printing, 1985–2004. 

http://mrvar.fdv.uni-lj.si/pajek/)
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Following similar logic, we can figure out the main sub-technology fields’ network of 3D printing during the 

period of 2005–2014 (shown as Figure 7). There are four essential fields that can be observed: (1) D06M- 

D06C-D06L-related fields (the Green Cluster), which present different kinds of materials for 3D printing 

(including fibers, threads, yarns, fabrics, feathers, or fibrous goods made from such materials); (2) B29K- 

B27N-B26F-related fields (the Blue Cluster), which indicate the close relationship to shaping during the 

process of fabricating 3D molds or products (including perforating, punching, cutting-out, stamping-out, 

severing by means other than cutting, and so on); (3) B81B-B60R-B60H-related fields (the Red Cluster), 

which show some practical applications of 3D printing technology, especially in the transportation area 

(including the micro-mechanical devices and vehicles); (4) H05B-H02J-related fields (the Yellow Cluster), 

which refer to circuit arrangements or systems for supplying or distributing electric power. Compared to the 

emerging stage, the sub-technology fields’ network of this stage demonstrates some detailed and sufficient 

clues for us to further explore the evolution of 3D printing technology. 
 

 
 

Figure 7. Sub-technology fields network of 3D printing during 2005–2014. 
 
 

Based on the steps of the cleanup procedure in Term Clumping, we initially obtain a list of the top 100 (high- 

frequency of occurrence) terms for further analyses. After calculating the TFIDF value, we picked up 50 key 

terms combining previous experience and experts’ knowledge. The topographic map of the 50 key terms in 

3D printing is shown in Figure 8 for the period of 1985–2004 and in Figure 9 for the period of 2005–2014, 

which are mapped in the ItgInsight, an Intelligence analysis software mainly developed by the laboratory of 

Knowledge Management and Data Analysis (KMDA) at the Beijing Institute of Technology. The number 

after the term represents the frequency of a certain term; the color that nodes are embedded with indicate the 

centrality degree of the nearest term; and the nodes covered in the same mountain share are more similar in 

topic. 
 

The 50 high TFIDF value terms in 3D printing technology from 1985 to 2004 are clustered into several 

mountains as follows (shown as Figure 8). The right part seems to be connected more tightly. ―polymeric 

material (13),‖ and ―mound (30),‖ are the zenith of the upper area, and the former is surrounded by material- 

related terms (e.g. ―polycarbonate (22)‖) and prototype-related term (e.g. ―rapid prototyping (20)‖); while 

the latter is embraced by a processing-related term like ―selective laser (31),‖ ―deposition (20)‖ and so on. In 
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the left area, ―raw material (23),‖ ―powder material (19),‖ and ―base material (13)‖ are outstanding terms that 

can be applied to track the technological topics. Therefore, we can infer that, in the emerging stage, the block 

for promoting 3D printing technology is lay in materials. This is mainly due to 3D printing producing 

component parts layer-by-layer through the additional use of materials. More evidence is shown in the rest 

of the mountains, of which peaks mostly consist of material-related terms, such as ―surfactant (15),‖ 

―polypropylene (19),‖ and so on. 

 

 
 

Figure 8. The co-occurrence network of top 50 terms during 1985–2004. 
 
 

Compared to the first phase, the development of 3D printing has become more advanced and focused. On 

one hand, current technologies are lacking in accuracy and scale, and also in the ability to produce truly 

robust parts in a sufficient variety of materials to make desirable consumer or automotive products. Thus, 

polymeric materials are paid plenty of attention in the past few years, which can be detected from the higher 

frequency terms, including ―polycarbonate (110),‖ ―polyamide (99),‖ ―polypropylene (89),‖ ―polystyrene 

(87),‖ ―polyvinyl alcohol (81),‖ ―polyethylene (80)‖ and so on. On the other hand, one of the advantages of 

using home-based 3D printing to manufacture spare parts is that it enables consumers to manufacture a one- 

off product at a very low volume with no cost penalty, unlike with traditional manufacturing methods. More 

and more patent assignees attempt to reduce the manufacturing cost and produce the 3D printing objects and 

products in a low-cost and environment-friendly way; this trend can be observed by terms such as, ―low cost 

(173),‖ ―efficient manner (85),‖ and ―environment friendly (40).‖ 
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Figure 9. The co-occurrence Network of Top 50 Terms during 2005–2014. 
 
 

After analyzing the main topics and trends in the 3D printing field, we attempted to discover the 

evolution pathways in a more detailed way. We used the global key-route MPA. First, we tried different 

sequential numbers of the routes to seek a reasonable threshold to identify paths exhibiting the greatest 

weights in the patent citation network, and then created a global main path using these links; the results 

are shown in Figure 10 and Figure 11. 
 

In terms of the global main path of 3D printing during 1985–2004 (shown as Figure 10), EP171069 is 

the well-known starting point of the 3D printing technology application, invented by Charles Hull. It 

presented a 3D object production using stereo-lithography, generating successive  cross-sectional 

laminae of objects at the surface of fluid medium by synergistic stimulation. Thereeafter, EP338751 

(rapid prototyping by fabricating a 3D object from representation) and WO1998028124 

(stereolithographic system to produce a 3D object) are also proposed by 3D Systems Inc. The fourth 

node is WO1998009798, whose patent assignee is Z CORP. Z CORP has a co-assignee cooperation 

with 3D Systems Inc. that introduced a 3D printing material system for offices, consisting of a mixture 

of particles of adhesive, filler, first fibrous components and solvents. Followed by WO1998009798, 

there are two linkages that are indicated: one is concerning some materials for use in 3D objects; another 

describes some potential applications (e.g., representation of bones), involving dispensing homogeneous 

fluid into dry particulate material. 
 

 
 

Figure 10. Global Main Path of 3D Printing during 1985–2004. 
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When we take the whole period into consideration, we have some interesting findings. First, EP171069 

and EP338751, as two groundbreaking patent families, play a very important role in pushing 3D printing 

technology forward for developing a prototype system based on a process known as stereolithography. 

Second, 3D Systems Inc. and Stratasys Inc., as two leading manufacturers and technology providers in 

the 3D printing field, have similar citation behaviors and tend to cite their own invitations. Such results 

possibly tell us another story—that they keep updating their technology innovation to lead the product 

market. Third, rapid prototyping by fabricating 3D objects is the hot topic in the initial stage (e.g., 

EP171069, EP338751, WO1998028124, and WO1998009798). As a result, composition materials 

became a new topic for the materials used in 3D printing of complex structures, which are thought of as 

a challenging but promising direction. 

 

 
 

 
Figure 11. Global Main Path of 3D Printing during 1985–2014. 

 
 

Conclusion and Discussion 
 

Tracing technology evolution pathways is essential to track innovation progress, but it is a challenge to 

understand the process of technical evolutions and trends in detail. Many scholars in technology 

management have sought to extract more technical intelligence to support decision making. However, 

most previous research focuses on single factors to trace the technology pathway, so it is hard to grasp 

both comprehensive insights on a macro level and technological features on a micro level. In this paper, 

we introduce a systematic approach that applies co-classification analysis to reveal the technical 

evolution process of a certain technical field, co-word analysis to extract implicit or unknown patterns 

and topics,  and main path analysis to discover  significant clues  about technology hotspots and 

development prospects. 
 

We conduct a case study in the field of 3D printing. As a ―tool-less‖ and digital approach to production, 

3D printing presents companies and consumers with a wide and ever expanding range of technical, 
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economic, and social benefits. Based on proposed analyses we can derive several beneficial insights for 

technology management. First, after the hobbled development for several years, 3D printing technology 

is now receiving more attention, and it seems poised to enter the maturity stage presently. The fierce 

competition in the 3D industry is predictable and the United States’ cooperation has a huge advantage 

over other countries for outstanding patent assignees and powerful technological reserves. 3D Systems 

Inc. and Stratasys Inc. show at the top of the sector, with the former edging out the latter for supremacy, 

even though they were not leading players in terms of patent application in recent years. Second, as for 

the layer-by-layer production characteristic of 3D manufacturing, plastics and shaping are important 

technological fields for the past twenty years. Rapid prototyping by fabricating 3D objects was the hot 

topic in the initial stage, and then compounding emerged. More and more patent assignees devoted 

themselves to reducing manufacturing costs and fabricating products. Reducing machine and material 

costs along with increased software accessibility will undoubtedly drive growth within the 3D printing 

market. Therefore, being low cost and environmental friendly are two critical factors on which to focus 

to win the market competition, particularly for traditional advantage companies. Third, the persistent 

interest inspired developments in many technologies, such as a wider variety of materials in 3D printing. 

Different from the traditional manufacturing analogue, composite materials became a new topic for use 

in 3D printing of complex structures, which are thought of as a challenging but promising direction. The 

changes in use will lead to different growth rates for different materials; at the same time, the promotion 

of materials will lead 3D printing to be applied to more sectors and applications. 
 

As an important part of patent analysis, technological evolution analysis can support decision-making 

for governments’ science and technology planning and enterprises’ R&D strategy. Furthermore, the 

systematic approach proposed by this study can be applied to other sectors to reveal the emerging and 

key technical field, monitor the landscape of patents via topical analysis, and study the process of 

technological evolution. Compared with the individual approaches, this combo method, to some extent, 

avoids the drawbacks, and can better locate the leading players and potential market, monitor the 

historical trajectory of technological development and forecast future development trends by engaging 

expert knowledge. Clearly, it can handle problems in a wide range of ST&I policy research and provide 

insights for R&D plan and strategic management. 

There are also several limitations of this paper requiring more detailed and specific discussions. On one 

hand, patent citations are more likely to be incomplete for the time lags between citing and cited patents, 

which is a great hindrance to know the relations between them overall (especially if we take patent 

family into consideration). Besides, this research study requires high data quality, but in fact not all 

patent office and database service companies provide comprehensive historical citation information 

(Limited organizations have the access to TI database for its high price). On the other hand, both co- 

classification analysis and co-word analysis are based on the co-occurrence relationship and high 

frequency terms or classifications. In actual situation, it is important to pay attention to analyzing lower- 

frequency terms and exploring non-co-occurrence relationship. Unlike scientific publications, inventors 

tend to comply with the requirements of the Patent Office and disclose the least possible information to 

protect their intellectual properties, so many terms could not reflect the actual development in the patent. 

Therefore, we anticipate further study to seek ways to better integrate with patent classification, patent 

text, and patent citation in detail, both from the theoretical level and practical level. 
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