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A B S T R A C T   

Biomedical innovation is the process of transforming scientific discoveries into vaccines, biodiagnostic reagents, 
and genetically-engineered drugs and therapies that save or improve patients’ lives. This type of process is typical 
of translational research, yet a great many efforts in the field of biomedical research fail to deliver the desired 
outcomes, and some even result in an enormous waste of time and resources. Long R&D periods and inefficient 
methods of transforming knowledge from basic scientific findings into practical clinical tools are the main 
reasons for failure. Understanding how scientific research co-evolves with technological development could 
provide novel and profound insights along the path of biomedical innovation. However, there are not many 
researches to deal with this aspect in recent years. Therefore, this paper presents a framework that traces the 
history of USFDA approved drugs in granular detail. Using scientific papers and patents as data sources, we use 
qualitative and quantitative techniques to analyze the innovation process from the inception of discovery into a 
marketable pharmaceutical. The focus of our analysis is the information found in science and technology doc-
uments, which can be an indicator of the interplays between discovery and development in a translational 
research process. Entropy statistics then provide an indication of the shared information for maximum utility in 
the analysis. The analysis results, which include expert judgments, could drive possible future insights into 
biomedical innovation with implications for policymakers.   

1. Introduction 

As a high-tech and highly interdisciplinary industrial sector, 
biomedicine can be an important part of a nation’s economy (Lee et al., 
2009; Burnette, 2015). Global expenditure into biomedical research and 
development has been rising in recent years. However, the pace of sci-
entific discovery in biomedical research appears to have remained 
relatively constant in terms of both life expectancy and the number of 
“new molecular entities” approved by the United States Food and Drug 
Administration (USFDA). In other words, translating this knowledge 
into concrete improvements in clinical medicine has been sluggish and 
lagged behind the pace of discovery (Duda et al., 2014; Bowen and 
Casadevall, 2015; Freedman et al., 2015). 

Morlacchi and Nelson (2011) argue that many policy circles still 
have an inadequate and overly simplistic understanding of how medical 
practice advances. Coupled with the growing disparity between inputs 

and outcomes in biomedicine, it seems clear that policymakers need 
finer insights into how new medical practices emerge and evolve both 
generally and in specific areas of medicine. One way to provide a 
complete but detailed picture of biomedicine would be to analyze 
research in many narrow areas of medicine and then combine those 
findings into a bigger picture (Metcalfe et al., 2005; Mina et al., 2007; 
Morlacchi and Nelson, 2011; Nelson et al., 2011). Although arduous, the 
effort may be well worth it, as the knowledge gleaned through such 
studies would allow us to understand how therapeutic innovations more 
specifically contribute to improvements in clinical practice and may 
illuminate the pathways to dramatically better modes of clinical 
practice. 

Some researchers have postulated that a linear progression from 
medical science to medical practice is not an accurate description of the 
complex interactions between these two poles (Schechter et al., 2003; 
Zerhouni, 2003; Rees, 2004). Further, the idea that more science yields 
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better technology has been challenged by claims that the logic of basic 
science is fundamentally ill-equipped to solve many complex techno-
logical problems and, indeed, may even conflict with technological 
learning (Gittelman, 2016). For instance, Sarewitz and Nelson (2008) 
argue that the cause of a problem could be the technological ‘fix’ itself – 
that is, a cheap and quick technological solution in biomedicine and 
health care will usually create more problems than its solves. They go on 
to explain that research policy shaped from this view will inevitably lead 
to dramatic and unfortunate consequences. 

For the purposes of this study, a marketable drug means a new mo-
lecular entity (NME) or a new biologic approved by the USFDA (Munos, 
2009). In pharmaceuticals, the path from basic science to a marketable 
drug follows a very standard route. It starts with the discovery of leading 
compounds. Further development typically involves applying a range of 
techniques and technologies related to chemical manufacturing and 
control, pharmacokinetics, toxicology, pharmaceutical formulation, and 
so on. Last but not least comes testing, trials, and market approval. 
Therefore, we argue that biomedical innovation (i.e., pharmaceutical 
innovation) evolves as a result of progress along two different pathways. 
One is advances in scientific understanding, but the other is advances in 
new techniques and technologies. The latter is at least as important as 
the former in many cases, and sometimes more so. In this regard, we 
have chosen to examine pharmaceutical inventions approved by the 
USFDA. As Munos (2009) explains, these drugs represent genuine ad-
vances in biomedicine and should count as innovation. Through a 
specifically-designed framework, we trace the history of different drugs 
from research to development to commercialization. The results should 
provide policymakers and practitioners with profound insights along the 
path of biomedical innovation. The entire transformation process is 
shown in Fig. 1 below. 

Most research that attempts to track and evaluate the relationships 
between science and technology relies on citation analysis at a docu-
ment level, at least to some extent. This pioneering approach was first 
proposed by Carpenter et al. (1980), who used science-related refer-
ences from non-patent literature as a tool to represent direct relation-
ships between technology and scientific knowledge. In the four decades 
since, the links between science and technology have remained a focal 
point for many researchers in the fields of bibliometrics and research 
policy. In Glanzel and Meyer’s (2003) study, scientific articles that cited 
patent documents revealed to the extent to which technological in-
ventions had penetrated basic research. Sung et al. (2015) showed the 
reverse, using the citations from patents to science- and 
non-science-based references to show agency in the links between 
technology and science. They also identified field- and firm-specific 
differences in the linkages between science and technology. Subse-
quently, the CHI Research Institute defined a reliability indicator to 
measure the degree of linkages between science and technology, called 
“science linkage”, according to the number of scientific papers cited by 

patents (Patrick and Steven, 2015). Du et al. (2019) also proposed an 
indicator, “technology linkage”, as a measure of the number of key 
patents relating to intellectual property rights over a product. Using this 
indicator, they examined biomedicine as a case and found that key 
technologies in products have increasingly originated from scientific 
research. 

Building on the literature, several studies have suggested that 
biomedicine relies more on public science than other industries because 
biomedical patents tend to include relatively more citations to basic 
research publications than the other sectors (Jibu, 2014; McMillan et al., 
2000; Sung et al., 2015). However, while measuring citations from 
patents to scholarly works does provide insight into the influence of 
published research on invention, industry, and enterprise at the indi-
vidual and institutional level, it provides a far from complete picture of 
translational science. Citations from an article to a patent (and vice 
versa) can be a measure of the degree of interaction between science and 
technology, but citations alone do not provide a deep analysis of con-
tent, nor do they expose the crux of how research becomes development 
or why some development efforts succeed while others fail. 

This paper is centrally oriented to the question “How does pharma-
ceutical innovation evolve?” To answer the question, we propose a 
framework that traces the history of USFDA approved drugs in granular 
detail. Using scientific papers and patents as data sources, we use 
qualitative and quantitative techniques to analyze the innovation pro-
cess from the inception of discovery into a marketable pharmaceutical. 
Within our analysis framework, research topics represent the elements 
of knowledge and topic evolution analysis show us how these topics 
evolve through the practice of science and technological development at 
a micro level. To ensure the analysis has maximum utility, entropy 
statistics provide an indication of the information that is shared between 
research activities and development activities. Experts then verify the 
findings and add their own finesse. The final outcome is a useful and 
valuable analysis, especially for policymakers, that drives insights into 
possible future developments within biomedicine. 

The rest of this paper is organized as follows. Section 2 briefly pre-
sents the related work. Section 3 provides the proposed methodology 
and data sources. Section 4 contains the topic evolution analysis of 
biomedicine and the mutual information calculations that measure the 
interplay between science and technology. Sections 5 and 6 conclude the 
paper with a discussion on our findings and policy implications, plus the 
limitations of this study and directions for future work. 

2. Related work 

2.1. The links between science and technology in biomedicine 

Throughout the entire process of researching and developing drugs, 
two activities are extremely critical: drug discovery and pre-clinical 
toxicology studies (Palucki et al., 2010; AI-Humadi, 2017). Drug dis-
covery is part of scientific research (Bowen and Casadevall, 2015; 
Casadevall and Fang, 2014), and pre-clinical toxicology studies (e.g., 
chemical manufacturing and control, pharmacokinetic, toxicology, and 
pharmaceutical formulation) are part of technology development. Evi-
dence of this type of effort is usually found in patents (Tseng, 2009; Choi 
and Hwang, 2014). 

Cutler and McClellan (2001) asserted that only a micro-level focus on 
the process of innovation has the potential to unpack the relationships 
that matter in the localized advancement of medical science and tech-
nology. Following this line, Mina et al. (2007) attempted to uncover the 
structures of medical understanding in coronary artery disease by 
searching for path-dependent, co-evolving scientific and technical 
knowledge. Morlacchi and Nelson (2011) provided additional evidence 
that a single-minded focus on research into a disease as a window into 
new therapies is incomplete at best. Their perspective restates the 
importance of the other two ways to advance new therapies: the 
development of technologies used in diagnosis or treatment and learning 

Fig. 1. The entire transformation process of drug research and development. 
(Source: Adapted and modified from Du et al., 2019) 
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in practice. Petersen et al. (2016) developed a triple helix model that can 
be used to trace the interplay among three key dimensions of the 
biomedical innovation process: disease, drugs and chemicals, and 
technological capabilities. In other words, analytics, diagnostics, and 
therapeutic techniques and equipment. Using the human papillomavirus 
as a case study, their analysis shows that disease and technological ca-
pabilities have the strongest link, followed by drugs and chemicals and 
technological capabilities. Ali and Gittelman (2016) believe that labo-
ratory science and clinical research are fundamentally different research 
paradigms and, further, that invention teams that span both basic and 
clinical research are more effective at patent licensing than teams 
comprised of inventors from only one domain. They find that technology 
development has a strong connection with both basic and clinical 
research in biomedicine, which can help inform policy for successful 
innovation in biomedicine. 

Most studies emphasize the importance of co-evolution between 
scientific and technical knowledge in the process of searching for new 
therapies and biomedical innovation more generally. However, most 
studies, especially the qualitative studies, only focus on a specific dis-
ease, which does not provide an overall perspective of the research field 
or the methods through which scientific research evolves into a suc-
cessfully developed technology. Our framework operates at the micro- 
level, but it spans the entire field of biomedicine and is designed to 
reveal key points along the path of innovation. 

2.2. Topic evolution analysis 

Latent Dirichlet allocation (LDA) is a common topic model that 
represents a document as a random mixture of latent topics, where each 
topic consists of a group of words with specific meanings. While it has 
proven to be an effective method of uncovering the implicit topics in a 
corpus of documents (Chen et al., 2017), the classic LDA model does not 
consider time so it cannot capture change (Wang and McCallum 2006). 
Producing focused, relevant results tends to require supplementary 
techniques. Detecting emerging topics in various fields of research is 
currently an area of great interest in academic circles. It is also a critical 
component of resource allocation decisions in research laboratories, 
government institutions, and corporations. According to Mane and 
Borner (2004), new areas of science continually evolve, while others 
gain or lose importance, merge, or split. These highly dynamic changes 
can make retaining an overview of the structure of a specific research 
field difficult. Mane et al. (2004) highlight that combining co-word 
occurrence with graphing techniques might be an effective way of 
identifying both the major topics of interest but, more importantly, the 
trends in and between those topics. Cobo, López-Herrera, 
Herrera-Viedma, and Herrera (2011) presented an approach based on 
co-word analysis and a longitudinal framework to detect the different 
topics addressed in a research field during a given period of time. In the 
case section, they apply their approach to the research field of fuzzy set 
theory using publications appearing in the most prestigious journals in 
that area. Co-word analysis (Callon et al., 1983) has been widely used as 
a content analysis technique to detect emerging trends in various 
research fields because it is a good way to map the strength of associa-
tions between items in textual data. Hence, to measure the strength of 
interactions between basic and technology research, co-word analysis 
has been used to examine software engineering (Callon et al., 1991), 
information research (Ding et al., 2001), fuzzy set theory (Cobo et al., 
2011), and physical chemistry (Bailón-Moreno et al., 2014). 

With this framework, we propose a new topic evolution model based 
on co-word analysis (See details in Section 3.2- Step 2). The results 
provide evidence of: the topic evolution process in biomedical research; 
the changing interactions between scientific research and technology 
development over time; and insights into the priority areas and knowl-
edge levels that are more likely to lead to new drugs. 

3. Methods and data 

The framework combines topic evolution analysis with entropy sta-
tistics to trace the evolution of USFDA approved drugs from discovery to 
market approval. Topic evolution analysis is used to track the emergence 
and evolution of new research and technology topics in the field of 
biomedicine. The entropy statistics are used to measure the mutual in-
formation between research and development as an indication of their 
interplay. Details of the framework and the data follow. 

3.1. Data 

In biomedicine, published papers are the best source of data on sci-
entific research (Bowen and Casadevall, 2015; Casadevall and Fang, 
2014), and approved patents are the best source of information on 
technological developments (Tseng, 2009; Choi and Hwang, 2014). 
These two sources of information for a given set of marketable drugs 
should demonstrate the translation from theoretical science into a 
practical technology. Data on drug approvals was sourced from the 
Orange Book on the USFDA website, more formally known as the 
“Approved Drug Products with Therapeutic Equivalence Evaluations”.1 

The Orange Book is a searchable listing of key patent and exclusivity 
information regarding USFDA approved drugs, which is updated 
monthly and comprises three files. “Products” contains the drug 
approval applications with information like ingredients, trading names, 
methods of delivery, etc. “Patents” contains the particulars of the pat-
ents, such as the type, applicant, and products covered. “Exclusivity” 
provides details on the type and duration of a drug’s protection. All three 
files contain application numbers, which we used to link the drug ap-
plications to the corresponding patents. From a search on 24 Feb 2019, 
we found 2302 drugs approvals since 1983 and 4124 corresponding 
USPTO patents. We then downloaded the original patents from the 
Derwent Innovations Index database. With the help of Lens.org,2 we 
identified 38,343 unique scholarly papers cited in those patents, which 
we subsequently retrieved from the Web of Science. 

3.2. Conceptual framework 

The broad research framework is illustrated in Fig. 2. 

Step 1 – Data preprocessing 

Typically, medical research papers and patents have some common 
fields (e.g., title, abstract, author) and some unique fields (e.g., key-
words, subject categories). The purpose of this step is to remove 
meaningless data and retrieve relevant information. We performed 
natural language processing techniques to obtain terms from collected 
records using ITGInsight software (v 1.7). Developed by the Knowledge 
Management and Data Analysis Laboratory at the Beijing Institute of 
Technology, ITGInsight3 is based on a technical term extraction method 
called PC-value that was first proposed by Han et al. (2011), which 
considers the frequency statistics of words in documents (Wang et al., 
2014). Experiments show that this method has higher accuracy for term 
extraction than the C-value method (Frantzi et al., 2000). The formula 
for calculating a term’s PC-value is as follows: 

PC − value(a)=

⎧
⎪⎪⎨

⎪⎪⎩

log|a|
2 f (a)+2|a|− 2 g(a) a is not nested,

log|a|
2
(
f (a) −

1
|Ta|

∑

b∈Ta

f (b)
)
+2|a|− 2 g(a) otherwise

(1) 

1 https://www.fda.gov/Drugs/InformationOnDrugs/ucm129662.htm  
2 https://www.lens.org/lens/patcite  
3 http://en.itginsight.com/download/ 
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where a is the candidate term, |a| is the length of a, f(a) is its frequency 
of occurrence in the corpus, and g(a) is the document frequency of a. In 
the second part of the equation, b is an extracted candidate term that 
contains a, and f(b) is the number of times b appears in the corpus, i.e., 
its total frequency. Ta is the set of extracted candidate terms that contain 
a, and |Ta | is the count of terms in the set. 

Pre-processing the vocabulary involved word segmentation, tagging 
parts of speech, manually deleting meaningless and extreme words, and 
combining words with more than 95% similarity, e.g., system and sys-
tems. All words were then sorted according to their PC-value to form the 
preliminary results. The most important aspect of this step is to build a 
thesaurus from the preliminary results, which is usually done better with 
the help of domain experts. The thesaurus is subsequently used to reduce 
noise, consolidate related terms and provide more refined terms. The 
details are shown in Table 1. From here, all further analyses were based 
on these terms, not on the full text. 

Step 2 – Topic evolution process analysis 

Topic evolution analysis can provide a rich picture of the technical 
information in both papers and patents to reveal how topics emerge as a 
subject of interest and how they develop over time. In other words, it can 
expose both the science and the technology. We used ITGInsight (v 1.7) 
to conduct our topic evolution analysis. The specific methods are out-
lined below. 

We divided scientific paper collection into time periods Dt = {dt1, dt2, 
dt3, …, dtm} (d: document; m: document number; t: time). To avoid 
interference from meaningless terms, we also took the thesaurus 
generated in Step 1 and performed further word segmentation on the set 
of papers. Thus, each paper corresponds to many terms, d = {w1, w2, w3, 
…,wz} (w: term) with each term representing a single topic. The next 
step was to construct a co-word network for each time period based on 
term (topic) co-occurrence. The same process was then repeated for the 
patents. More specifically, if Topic a and Topic b appeared in the same 
document, they were deemed to have a co-occurrence relationship. 
Further, the number of times a and b co-occurred in any document was 
considered a reflection of the strength of the connection and was 
weighted according to the number of co-occurrences within a certain 

Fig. 2. Framework for the research on the biomedicine field.  
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period. The differences between each co-word network for each time 
period reveals how topics have evolved. For instance, some topics might 
emerge during a time period, while others might disappear. Some gain 
or lose importance; others might fuse or split. We identified the 
following evolutionary relationships. Fig. 3 illustrates some examples of 
these relationships.  

Ø Emergence: a topic is mentioned for the first time. It could be 
entirely new or loosely related to something known.  

Ø Death: a topic that has been mentioned in previous time periods is 
not mentioned at all.  

Ø Gaining importance: mentions of the topic increase over two or 
more consecutive periods.  

Ø Losing importance: mentions of the topic decrease over two or more 
consecutive periods.  

Ø Topic fusion: in time period T-1, two topics appear in different 
documents, but, in time period T, they begin to appear in the same 
document.  

Ø Topic split: in time period T-1, two topics appear in the same 
document, but, in time period T, they begin to appear in different 
documents. 

Step 3 – Tracing the mutual information between science and 
technology 

This step is where we measure the information shared between sci-
entific research and technological development. The mutual informa-
tion can be calculated according to Shannon’s information entropy 
formula (Shannon, 1948). Shannon (1948) defines information entropy 
as the frequency of random events. When only a discrete random vari-
able x exists, the information entropy is calculated as: 

Hx = −
∑

i
P(xi)log2P(xi) (2) 

In the above formula, Hx is the value of information entropy, that is, 
the size of uncertainty in units of bits, and P(xi) is the probability of 
variable x. On the basis of this definition, the information entropy when 
two variables x and y exist is calculated as: 

Hxy = −
∑

ij
P
(
xi, yj

)
log2P

(
xi, yj

)
(3)  

Txy = Hx + Hy − Hxy (4) 

In formula (3), Hxy is the two-dimensional information entropy and P 
(xi, yj) is the joint probability distribution of two variables. The transfer 
amount Txy in formula (4) represents the two-dimensional mutual in-
formation, i.e., the uncertainty of information transmission between the 
innovation process representing the strength of interaction between 
scientific research and technology development and is the overlapping 
part of them (Lee and Kim, 2016). 

Therefore, a decreasing mutual information value (Txy) is consistent 
with the outward expansion of an emerging research field and indicates 
that scientific research and technology innovation has become more 
distinctly decoupled rather than becoming locked in its initial combi-
nation. By contrast, an increasing mutual information value (Txy) is an 
indication of increasing dyadic coupling, possibly originating from the 
interactive integration of two research fields (Petersen et al., 2016). 

4. Results 

In pharmaceutical development, there is a set path from basic 
research to a marketable drug. It starts with the discovery of leading 
compounds, then moves through a series of technologies related to 
chemical manufacturing and control, pharmacokinetics, toxicology, 
pharmaceutical formulations, and others until it is fully developed. The 
last stage is approval for market, which involves tests, trials, and other 
hoops. According to Sternitzke (2010), it takes an average of 8–14 years 
to move from compound synthesis to commercialization. For policy-
makers, understanding why it takes this amount of time to bring a drug 
to market could be useful. Further, without knowledge of how and what 
takes time, little can likely be done to shorten the period of develop-
ment. As mentioned before, we argue that biomedical innovation 
evolves as a result of progress along two different pathways – one being 
advances in scientific understanding, and the other being technological 
advances. In this regard, understanding how scientific research 
co-evolves with technological development could provide novel and 
profound insights along the path of translation process. Therefore, our 
analysis draws from the information found in both scientific papers and 
technology patents, to reveal the interplays between research and 
development in a translational research process. 

Following the method outlined in Section 3, Sections 4.1 and 4.2 
provide the results of topic evolution analysis for research and devel-
opment, respectively, and Section 4.3 presents the entropy statistics for 
the shared information. 

Table 1 
Overview of the natural language processing.  

Step Description 
Pre-processing 
1 Title/Abstract (4124 USPTO patents and 38,343 unique scholarly papers 

cited in these patents) − apply natural language processing techniques 
embedded in ITGInsight (v 1.7) 

2 Data cleaning− remove meaningless words (e.g. one-day therapy, healthy 
young subjects, absorption rate, conscious rats, normotensive subjects, f 
forms, direct label, healthy control subjects), and extreme words (e.g. 
occurrence in only one record, word length less than 2) 

3 Fuzzy matching− combine words with similar structures based on pattern 
commonality, such as stemming and text similarity) 

4 Sequencing− Sort the words according to their PC-value, forming the 
preliminary results 

Expert knowledge 
5 Consolidation and modification (preliminary results) − words that indicate 

the same meaning (e.g., abbreviations, synonyms and different representing 
forms of chemicals) will be merged to improve the integration level after 
consulting the domain experts, forming a thesaurus 

Term extraction 
6 Title/Abstract (4124 USPTO patents and 38,343 unique scholarly papers 

cited in these patents) − apply natural language processing techniques 
embedded in ITGInsight (v1.7) and the thesaurus for term extraction  

Fig. 3. The process of topic evolution analysis.  
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4.1. The evolution process of scientific research 

To begin assembling a picture of how interest in these topics has 
emerged and evolved, we first took the 38,343 scientific papers and 
divided them into years. We then selected the top-30 most frequently 
mentioned terms for each year and conducted topic evolution analysis 
(Callon et al., 1991) as outlined in Section 3.2 Step 2. Fig. 4 illustrates 
how the topics have gained or lost importance, merged, or split over the 
period of study. Each topic has a different color, and the thickness of the 
connection represents the strength between topics. 

This analysis reveals insights on two levels – first, some broad trends 
in the field and, second, a host of micro-level translations. There are too 
many specific evolutions to discuss individually. Hence, these next few 
sections discuss the three main overarching trends we discovered 
through a select few micro-level examples. These examples are good 
illustrations of how scientific research co-evolves with technological 
development along the path of biomedical innovation. They also show 
the power of the framework to capture big picture and small picture 
insights concurrently.  

(1) The mechanisms of a drug’s action mostly fall into particular 
categories 

Therapeutic mechanisms are the specific biochemical interactions 
through which a drug produces its pharmacological effects. Over the 
period of study, we find that these mechanisms mostly fall into two 
categories: receptor mechanisms and non-receptor mechanisms. Hy-
pertension/blood pressure is perhaps the strongest example of the dif-
ference between the two. Blood pressure has been a dominant topic in 
scientific research since 1991, but, in 1997, a strong connection between 
blood pressure, losartan potassium, and ACE inhibitors emerged. Both 
losartan potassium and ACE inhibitors have been studied as treatments 
for hypertension, but they have different therapeutic mechanisms. ACE 
inhibitors prevent angiotensin II from being produced (a non-receptor 
mechanism), while losartan potassium blocks the angiotensin re-
ceptors (a receptor mechanism). There is no clear evidence yet for which 
treatment is better (Ng et al., 2012). However, ACE inhibitors are more 
likely to be the first treatment of choice, while losartan potassium is 
likely to be prescribed to patients who have not responded to treatment 
with ACE inhibitors. 

Most quick-acting drugs are based on receptor mechanisms. And, 
further, most quick-acting drugs tend to achieve their therapeutic effects 
by binding antagonists to either endogenous ligands or substrate 
competitive receptors. For example, paliperidone palmitate, which had 
high word-frequency from 2010 to 2011, is the main ingredient of 
atypical long-acting antipsychotics (INVEGA TRINZA and INVEGA 
SUSTENNA4). They are fast-acting in acute phases of mania and 
continuously improve symptoms in maintenance phases. They also have 
solid efficacy and convenient administration, offering a new treatment 
option for schizophrenia that could help patients stick to their regimen, 
preventing relapse. All are based on joint antagonism of the central 
dopamine 2 (D2) and 5-hydroxytryptamine 2 (5HT2A) receptors. 
Another quick-acting drug that acts directly on receptors/transmitters of 
the central nervous system is ZOHYDRO ER.5 Its main ingredient is 
hydrocodone, which had high word-frequency from 2015 to 2016 
(hydrocodone er [2015], hydrocodone er tablet prototypes [2015], 
hydrocodone [2016]). Specifically, hydrocodone is a phenanthrene 

derivative commonly used in combination with acetaminophen to 
relieve moderate to severe pain.  

(2) Reducing complications from treatments cannot be overlooked 

Drugs are often accompanied by side effects that endanger patients’ 
health during treatment. Therefore, ways to reduce potential side effects 
has become a vital part of the drug research and development process. 
Diabetes mellitus (DM) is a good example of this phenomena. DM is a 
common, non-communicable, chronic disease that has been thoroughly 
studied, with particular dominance in 2003, 2009, and 2018. Intensive 
glycemic control (IGC) (intensive therapy [1993]) has been studied to 
treat DM for some time. However, landmark clinical studies have 
demonstrated that, although IGC might reduce the risk of microvascular 
events, macrovascular events, and mortality are either unaffected or 
elevated (Gerstein et al., 2008). In addition, the most common side effect 
of IGC is hypoglycemia, which increases the risk of death, dementia, and 
depression. As Fig. 4 shows, several strong connections between terms 
that related to blood sugar control research emerged around 2008 and 
2009: hazard ratio ↔ intensive therapy ↔ standard therapy ↔ intensive 
glucose control ↔ intensive control; intensive-therapy group ↔ 
standard-therapy group ↔ normal glycated hemoglobin levels ↔ gly-
cated hemoglobin value, etc. These findings have roused heated debate 
among researchers, as can be found in Kelly et al. (2009), who sum-
marizes the purported clinical benefits and harms of intensive versus 
conventional glucose control for adults with type 2 diabetes. In their 
overall analyses, intensive glucose control reduced the risk of cardio-
vascular disease and increased the risk of severe hypoglycemia. Addi-
tionally, Ray et al. (2009) undertook a meta-analysis of randomized 
controlled trials to determine whether intensive treatment was benefi-
cial, believing that intensive compared to standard glycemic controls 
could reduce coronary events without increasing the risk of death. 
Nowadays, lifestyle modifications, symptom reduction, and sustained 
inner immune homeostasis are keys to preventing and treating DM 
because, when followed, these measures of controlling blood sugar 
levels can result in significant quality of life improvements with little to 
no side effects (Saito et al., 2011; Nguyen et al., 2017).  

(3) Drug delivery pathways are an important research turning point 

Inhalation is an important drug delivery pathway that is widely used 
in clinical medicine. As is well known, asthma, chronic obstructive 
pulmonary disease, and allergic rhinitis are all commonly treated by 
inhaling a drug into the body’s blood circulation through a drug delivery 
device. However, differences in morphology, molecular weight, charge, 
and the moisture absorption of drug particles can lead to dramatically 
different therapeutic effects. Fig. 4 shows that pulmonary hypertension 
and nitric oxide had a strong connection in 2000, and inhaled insulin 
and glycemic control were strongly connected in 2005. In the following 
years, both were widely researched because they were new types of 
inhaled treatments with inherent advantages, such as their safety and 
fast-acting effects. Exubera and Afrezz are prime examples, which were 
approved by the USFDA as inhaled treatments for DM in 2006 and 2014, 
respectively. Exubera was developed by Pfizer as a combination drug 
and device product for treating diabetes. It consists of technosphere 
insulin and an oral inhaler device (the Gen2 inhaler). Inhaled techno-
sphere insulin is an effective and generally well-tolerated agent for the 
prandial treatment of hyperglycemia in T1DM and T2DM patients and 
was thought to provide a solution to insulin initiation barriers, such as 
injection phobia, which concerns weight gain and hypoglycemia. The 
glycemic efficacy of technosphere insulin is lower than that of subcu-
taneous insulin, but inhaled insulin has a lower risk of severe hypogly-
cemia and weight gain. Exubera was not particularly successful at 
market, which the manufacturer attributes to competition and mis-
pricing, not issues with the innovation process (Munos, 2009). However, 
the MannKind Corporation subsequently developed Afrezza as a better 

4 INVEGA TRINZA and INVEGA SUSTENNA (Main ingredient: paliperidone 
palmitate) were approved by USFDA on 31/6/2009 and 18/5/2015 
respectively.  

5 ZOHYDRO ER (Main ingredient: hydrocodone) was approved by USFDA on 
25/10/2013. HYDROCODONE BITARTRATE AND ACETAMINOPHEN (Main 
ingredient: acetaminophen and hydrocodone bitartrate) was approved by 
USFDA on 29/10/2018. 
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version of Exubera. The inhalation powder is human insulin, and the 
dosing system and delivery device is simpler. 

4.2. The evolution process of technology development 

Next, we analyzed technological development. As we know, tech-
nology is a broad concept. Among other things, it involves the devel-
opment and application of tools, machines, materials and processes that 
help to solve human problems (McOmber, 1999). In the field of biblio-
metrics and text mining, researchers use IPCs or keywords that relate to 
technical attributes to define technologies (Song et al., 2017). Hence, for 
the purpose of this study, all the terms related to technologies about 
chemical manufacturing and control, pharmacokinetic, toxicology, 
pharmaceutical formulation, etc. reflect elements of technology devel-
opment (Tseng, 2009; Choi and Hwang, 2014). 

Similar to Section 4.1, we took the 4124 patents and divided them 
into years. We then selected the top-30 most frequently mentioned terms 
for each year and conducted a topic evolution analysis (Callon et al., 
1991) (as outlined in Section 3.2 Step 2). The results are shown in Fig. 5, 
followed by our key observations.  

(1) The therapeutics mechanism is changing 

The most apparent element of the results is the numerous connec-
tions between terms that relate to different organic groups in different 
time slices, e.g., 1–6c haloalky [2001] ↔ 1–6c alkyl [2001] ↔ 1–6c 
alkoxy [2001], 1–6c alkoxy [2005] ↔ 1–6c alkyl [2006], 4–9c hetero-
cycloalkylalkyl [2004] ↔ mixed aryl [2004] ↔ 4–9c cycloalkyl [2004] 
↔ 1–6c alkyl [2005]. All these terms represent important components 
related to the receptor mechanism of drugs. For example, azabicyclic 
compounds are antibacterial agents that can be used therapeutically or 
as disinfectants (Lampilas et al., 2006). Phenethanolamine compounds 
are beta 2 adrenoreceptor antagonists for treating respiratory diseases, 
skin diseases, depression, and congestive heart failure, among other 
things (Box, Coe, and Looker, et al., 2005). Notably, 4-oxoquinoline 
compounds, pharmaceutical salts, anti-HIV agents, and 1–4c alkyl 
appear together in 2003. 4-oxoquinoline compounds (or their pharma-
ceutical salts) have found use as anti-HIV agents in the treatment and 
prevention of AIDS. They are particularly efficacious when administered 

in combination with protease inhibitors and reverse transcriptase in-
hibitors due to their synergies. Plus, they are safe and have few side 
effects. The connection suggests a period of transition, where experts 
first began to focus on how to use these organic groups to synthesize 
specific enzyme inhibitors. Fig. 6 shows that, by 2017, 
chemically-synthesized enzyme inhibitors had become the main sources 
of new drugs, e.g., the strong connections between 3 and 8c cycloalkyl, 
2–6c alkenyl, and 1–4c alkyl. These terms represent components of 
enzyme inhibitors, that can inhibit specific enzymes related to certain 
diseases in organisms for therapeutic effect. Enzyme inhibitors mainly 
come from plants, microorganisms, and chemical synthesis. Combining 
high throughput screening technology with combinatorial chemistry 
and combinatorial biosynthesis technology, large-scale screening of 
enzyme inhibitors has been realized, which is the main channel for many 
large pharmaceutical companies in the world to screen new drugs based 
on enzyme inhibitors. 

(2) Drug release patterns are gradually changing in the drug dis-
covery process 

The word “tranexamic acid” occurred frequently from 2008 to 2012 
and was often accompanied with the term “dosage form”. In the field of 
medicine, tranexamic acid (or its pharmaceutical salt) is useful for 
treating patients with menorrhagia, conization of the cervix, epistaxis, 
hyphema, or hereditary angioneurotic edemas. It can also lessen heavy 
menstrual bleeding. In 2008, an oral form of tranexamic acid was 
patented with a release time somewhere in between the immediate and 
controlled release times of its predecessors (Greiwe et al., 2008). This 
modified release form both increases the in-vitro dissolution rate of 
tranexamic acid and reduces the common side effects associated with 
the immediate release forms, such as headaches, nausea, vomiting, 
diarrhea, constipation, cramping, and bloating. In 2010, a tablet 
formulation of tranexamic acid was developed (Facemire et al., 2010). 
This release mechanism can prevent a large bolus of tranexamic acid 
forming in the stomach, which means patients should see fewer adverse 
effects from tranexamic acid therapy. Over the next two years, re-
searchers attempted to adjust the proportions of the tranexamic acid 
with its pharmaceutical salt to increase bioavailability levels. Success 
appears to have been achieved in 2013, as indicated by the 

Fig. 4. The evolution of scientific research in biomedicine. 
(Note: Fig. 4 is drawn by ITGInsight v 1.7) 
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co-occurrence between bromocriptine mesylate ↔ dosage form that 
grew in dominance in 2013, 2015, 2017 and 2018, when experts found 
that micronized bromocriptine mesylate in the form of an oral tablet 
could allow the gastric and intestinal mucosa to absorb a substantial 
amount of bromocriptine. Ever since, researchers have been exploring 
new and different release modes for bromocriptine mesylate in attempts 
to find effective treatments for a range of diseases. For example, 
normal-release bromocriptine mesylate is useful for treating 
hyperprolactinemia-associated dysfunction, acromegaly, and Parkin-
son’s disease. It also prevents or mitigates intolerance to levodopa 
therapy for Parkinson’s disease, physiological lactation, insulin 

resistance, hyperinsulinemia, and hyperglycemia. Immediate-release 
bromocriptine mesylate (cycloset) is useful for improving glycemic 
control in Type II diabetes patients (Scranton et al., 2008). 

(3) The proportion of pharmaceutical composition plays an impor-
tant role in medicinal effects 

It was already known that an ophthalmic composition of bimatoprost 
and benzalkonium chloride in aqueous form was helpful for treating 
glaucoma or intraocular hypertension in mammals. In 2012, a strong 
connection between “ocular hypertension”, “intraocular pressure”, and 

Fig. 5. Technology evolution pathways in biomedicine. 
(Note: Fig. 5 is drawn by ITGInsight v 1.7) 

Fig. 6. The knowledge penetration from scientific research into technology development.  
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“benzalkonium chloride” emerged as an evolution of these previous 
findings. The 2012 composition shows higher bioavailability and higher 
permeability than only bimatoprost (Chang et al., 2006, 2009). More-
over, the proportion of bimatoprost and benzalkonium chloride also 
affects the permeability of bimatoprost across the corneal epithelial cell 
layers and results in less hyperemia. Currently, 0.01–0.015 wt./vol.% of 
bimatoprost and 0.02 wt./vol.% of benzalkonium chloride are consid-
ered as the most effective formulation ratio (Chang et al., 2013). In 
addition, there are numerous studies on pharmaceutical composition in 
patents. For instance, a pharmaceutical composition which can be used 
for drugs that are unstable in polyethylene glycol containing composi-
tions is proposed by Ishida et al. (2009). The experiment results show 
that it can be used as stable pharmaceuticals for administering drugs 
especially (i) amide compounds for treating and preventing e.g. sleep 
disorders (e.g. circadian rhythm sleep disorder or jet lag), senile de-
mentia, Alzheimer’s disease, osteopathies, cerebral circulatory disor-
ders, head trauma, stress, depression, convulsions, anxiety, epilepsy, 
Parkinson’s disease, hypertension, cataracts, cancer and diabetes, or (ii) 
amine compounds useful as amyloid beta protein production inhibitors 
for treating and preventing e.g. cerebral vascular disorders, head trauma 
and spinal disorders. 

4.3. Tracing mutual information in scientific research and technology 
development 

As described in the Methodology (Step 3), we calculated the mutual 
information between scientific research and technology development on 
the basis of Shannon’s definition of information. After term extraction, 
we calculated the mutual information for all pairwise terms in every 
year. The cumulative frequency of all terms was considered to be the 
benchmark for calculating the weight of every term. More specifically, 
two-dimensional mutual information is a kind of quantitative analysis 
method that represents dynamic evolution trend on the information 
interaction between science− technology. The unit of information en-
tropy is expressed in bits to facilitate the research results. 

From Figs. 6 and 7, we can see that the mutual information between 
each science-technology pair has a tendency to increase as time passes, 
which indicates the connections between them are growing stronger. 
However, this does not last forever – all eventually reach a steady state. 
Fig. 6 further shows that, as more technology is developed, the amount 

of knowledge penetration from scientific research into technological 
innovation gradually increases in the periods following. But nothing in 
Fig. 7 reveals the promotion effect of technology development on sci-
entific research. 

The analysis results show that problems with information interaction 
between scientific research and technological development still exist, 
and that overall interaction efficiency is low. In recent years, researchers 
and policymakers have paid considerable attention to the transfer of 
basic science research achievements by significantly promoting the flow 
of knowledge across institutions. However, this move is in its infancy 
and requires further steps in due course. 

Fig. 8 shows a more in-depth analysis on the information interaction 
between scientific research and technology development. These illus-
trations show the time periods over which the knowledge trans-
formation process occurs. The relevant numbers are marked in Fig. 8, 
when the bilateral mutual information between scientific research and 
technology development is greater than the average. We can see that the 
period between 1997 and 2007 was dominated by scientific research 
and technology development is concentrated around 2012–2013. 
Therefore, it can be concluded that there is 5–16 year delay to generate 
an adaptive technology that can help convert theoretical research into 
practical clinical medicine. 

5. Discussions and policy implications 

Over the past few decades, innovation in biomedicine has been an 
important part of the policy agenda for many countries. However, 
biomedical pursuits can impose a serious burden on financial resources 
because they typically demand enormous levels of investment, they are 
risky, and the return on investment is a very long term. The focus of our 
analysis so far has been on the topic evolution paths of scientific research 
and technological development over time at a micro level using as our 
subject of analysis drugs approved for use in the world’s largest market 
for pharmaceutical products – the United States. A deeper understanding 
of how pharmaceutical innovation evolves may lead to increased con-
fidence in science by society and additional support for future research. 
Our discussion here concentrates on three related issues: research trends 
in biomedicine, how traditional concepts of treatment are transforming, 
and the cooperative supervision of both scientific research and tech-
nology development. 

Fig. 7. The promotion effect of technology development on scientific research.  
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In terms of research trends, we two main drug action mechanisms: 
those that operate on receptors and those that do not (scientific research 
1). However, our topic evolution analysis revealed gaps between science 
and technology that imply the following path: receptor mechanism → 
targeted therapy (non-receptor mechanism) → gene therapy → stem cell 
therapy. Today, targeted therapy is the main treatment for many dis-
eases, and it would be natural to assume that gene-based therapies are 
the next therapeutic mechanism. For example, Luxturna was approved 
by the USFDA in 2017. Unlike other approved drugs, it is an adeno- 
associated virus vector-based gene therapy indicated for the treatment 
of patients with confirmed biallelic RPE65 mutation-associated retinal 
dystrophy.6 However, terms like ‘gene expression’, ‘cart gene’, and 
similar have been topics of research in scientific papers for decades. 
Hence, researchers have been focusing on genes for a long time, but most 
work remained theoretical until 2017 when terms like ‘gene sequencing’ 
became more prevalent. Gene sequencing is a technique that identifies 
and analyzes entire gene sequences from blood or saliva. In recent years, 
researchers have been exploring ways of using gene sequences to predict 
the chances of someone developing a disease and treating it in advance. 
It is also interesting to note that “graft versus host disease pathogenesis” 
(GvHD), which relates to stem cell therapy, has seen high word- 
frequency in recent years (Kurtzberg et al., 2014). Therefore, we can 
infer that stem cell therapy may be another fledgling branch of 
biomedical research. The key here is that, usually, changing a thera-
peutic mechanism does not occur without the support of a technological 
development. Receptor mechanisms and targeted therapies rely on 
age-old organic synthesis (technology development 1), but gene therapy 
was stuck in theory until gene sequencing became viable. Similarly, stem 
cell therapy also required some advances in supporting technology to 
kindle resurging interest. 

In addition, the analysis shows that drug release patterns are already 
changing (technology development 2), although gradually, which also 
relates to the changing proportions of drugs versus salts in pharma-
ceutical composition (technology development 3). Both these technology 
trends are attempts to reduce the complications associated with treat-
ments – a motivation that has dominated biomedicine (scientific research 
2). Generally, survival and a functional cure have been the first 
consideration in all clinical treatments. But, more recently, how to 
effectively reduce potential side effects becomes a vital part of drug 
research and development process. Our analysis shows that “qt pro-
longation gene sequence” and “qt interval” had a strong connection in 
2017. Cardiac QT interval prolongation is one of the important risk 
factors in clinical malignant arrhythmias and sudden cardiac death. 
After identifying an individual’s gene sequences and analyzing their 

gene expression products, one can determine whether a compound is 
capable of prolonging a qt interval in that person. Meanwhile, it is also 
one of the significant side effects of taking antidepressants. Interestingly, 
a nasal spray formulation of esketamine (Spravato) was licensed as 
adjunctive therapy for the management of adults with treatment- 
resistant depression (TRD) two years after the appearance of “qt pro-
longation gene sequence” and “qt interval”. Given its novel mechanism 
and the current paucity of approved pharmacotherapy options for TRD, 
esketamine nasal spray in conjunction with an oral antidepressant pro-
vides an important treatment option for this difficult-to-treat high-risk 
patient population. This phenomenon indicates that reducing compli-
cations from treatment is indeed an important consideration in drug 
discovery and exploring new drug delivery pathways is also worth 
further researching (scientific research 3). 

From the above analysis, we can conclude that the relationship be-
tween scientific research and technological development is crucial, but a 
time lag does exist in the knowledge transformation process (Collins, 
2011; Reidenberg, and Erle, 2012). Our analysis shows it takes 5–16 
years to generate an adaptive technology that acts as a catalyst for 
translating theoretical research into clinical practice. Therefore, we 
suppose scientific research institutes and pharmaceutical enterprises 
should be encouraged to cooperate, lest they evolve independently as 
suggested by Gittelman (2016). Research institutes should focus on 
pre-clinical processes and concept verification (usually clinical trial 
phase II). They should seek to verify concepts as fast as possible, and 
then sell their evidence to large pharmaceutical enterprises. Pharma-
ceutical companies should focus on managing patents and organizing 
external partners to conduct drug R&D. Only in this way can the 
biomedical industry achieve a more efficient business model. In addi-
tion, we find that integrating different types of knowledge will help 
speed up the diffusion and application of scientific research in 
biomedicine. However, it is also important to understand that the par-
adigms and beliefs about the very nature of medical discovery in 
different research fields are not same, and even conflict in some cases. 
For example, the problems with “permeation” in different disciplines in 
biomedical innovation is very complex, and involves understanding, 
integrating, and disambiguating. For policymakers, it is necessary to 
develop demand-oriented strategies and form a new research paradigm, 
promoting common development should be the focus of future policy 
efforts and initiatives. 

We are sure that this research has explored trajectories of innovation 
progress and not just purely of inventions. We also believe that the 
research framework and the software developed by our laboratory is 
capable of generating robust evidence of innovation at a micro level that 
yields interesting possibilities for applications in other research do-
mains. We hope that this paper has demonstrated that, for most re-
searchers and policymakers in the sciences, focusing on the relationships 

Fig. 8. The shared information between scientific research and technological innovation.  

6 https://www.drugs.com/pro/luxturna.html 
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between science and technology is a valuable and important direction 
for future research. 

6. Limitations and future research 

This study has some limitations that are worth discussing. First, we 
measured the interplay between scientific research and technology 
development in terms of mutual information. Yet, different forms of 
uncertainty exist, which impact the results of word segmentation and 
selection. In future studies, we intend to explore these impacts and 
develop solutions to refine the analysis process and results. Second, the 
specific focus on the Orange Book and USFDA approved drugs limits the 
generalizability of this study. In future work, we intend to conduct a 
more systematic analysis of additional medical areas to generalize our 
findings. 

This framework allowed us to trace the evolution of topics in 
biomedicine at a content level. We were also able to explore the in-
terplays between scientific research and technological development 
using mutual information as an indicator. The knowledge represented 
through this process provides novel quantitative insights into the 
biomedical ecosystem, with practical implications for inventors, in-
vestors, and policymakers. Our next undertaking is a heterogeneous 
information network that contains scientific research, technological 
development, marketable drugs, and drug side effects with the aim of 
forecasting the frontier research points in the field of biomedicine. 
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