
Chapter 6 Pathfinder Associative Network 

The Pathfinder associative network (PFNET) was originally designed to assist re-
searchers with psychological analysis based on a proximity data set (Schvaneveldt 
et al., 1989). It is a structural and procedural modeling technique that extracts un-
derlying connection patterns in proximity data and represents them spatially in a 
class of networks (Cooke et al., 1996). 

The power of the Pathfinder associative network rests on its ability to discard 
insignificant links in the original network while it reserves the salient semantic 
structure of the network. The simplified network still maintains the proximity 
connections and fundamental characteristics of the original network. PFNET can 
be used to visualize semantic relations of related nodes in a more effective and 
meaningful way. The Pathfinder associative network can handle data with both an 
ordinal and ratio nature. 

The triangle inequality principle which is centered in the Pathfinder associa-
tive network algorithm is applied to simplifying an original network. The triangle 
inequality is used to identify paths with the lowest weights in the network, elimi-
nate redundant ones, and make the network more economical. In the Euclidean 
space, the triangle inequality can be easily interpreted and illustrated. Given three 
points (A, B, and C) in the Euclidean two-dimensional plane, the distance between 
AB is always smaller than or equal to distances of AC and CB(See Fig. 6.1). When 
C is situated on the line determined by AB, the distance between AB is equal to 
distances of AC and CB. In other words, AB is always the shortest path in the net-
work. If there is a network consisting of multiple connected points and the net-
work is pruned in a way that all shortest paths are preserved and redundant paths 
are discarded, the final pruned network would be a Pathfinder network. The main 
idea of the Pathfinder associative network is to discard the redundant paths and 
keep the significant ones in a network. 

The principle of the triangle inequality can be extended to an abstract space. 
In that case, connection proximity between two points may be measured in other 
forms such as invisible semantic similarity between two objects rather than dis-
tance. 

The Pathfinder associative networks can be applied to many different fields of 
study, such as cognitive science, artificial intelligence, psychological analysis, in-
formation retrieval, knowledge organization, and information visualization as 
well. 
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Fig. 6.1. Display of three points in the Euclidean space 

6.1 Pathfinder associative network properties  
and descriptions 

6.1.1 Definitions of concepts and explanations 

A graph can be defined as G(V, E). V is a set of vertices (or nodes) {N1, N2, …, Nn 
}and E is a set of edges in which an edge is connected by a pair of vertices (nodes) 
in V. |V|=n is defined as the number of nodes in V. In a Euclidean plane, a graph 
can be depicted with vertices as points and edges as segments linking these verti-
ces. A graph G is also called a network. 

Connections and relationships of all edges in E can be described in an adja-
cent n×n matrix EG (See Eq. (6.1)). Headings of both the column and row are 
nodes and orders of these nodes in both column and row are exactly the same. The 
matrix EG is represented as: 
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Where eij is defined as an edge from node Ni to node Nj. If there is an edge be-
tween Ni to Nj, then the corresponding eij is equal to 1, otherwise eij is equal to 0. 
We define eii=0, assuming that a node is not linked to itself. It suggests that the 
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diagonal elements of the matrix are always equal to zero. Constant n is the number 
of nodes in a graph. If a graph is undirected, then we have eij=eji. Therefore, the 
matrix EG is symmetric against its diagonal. If a graph is directed, the equation 
(eij=eji) may not hold. Thus the corresponding matrix EG is asymmetric against its 
diagonal. 

Parallel to the matrix EG, the weight matrix W (See Eq. (6.2)) defines a 
weight wij that is associated with an edge eij in a graph. In other words, wij is the 
weight assigned to eij. 
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(6.2)

Similar to eii, wii is always equal to 0. W and EG have the same matrix struc-
ture but different contents and meanings. It is clear that if eij=0, then wij=0. That 
is, if there is no link between two nodes, the weight is zero. 

As we know, the Pathfinder associative network is a simplified network. It 
always has the same nodes as the original network but possesses fewer edges than 
the original network. Therefore, the Pathfinder associative network can also be de-
fined as a matrix PF where pij is a weight assigned to the edge eij. 
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WPF  (6.4)

A path in the graph/network is comprised of several connected edges. For in-
stance, path P={eab, ebc, ecd }is a path consisting of three edges eab, ebc, and ecd. 
The weight of a path is calculated by the Minkowski r-metric (See Eq. (6.5)): 
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In the above equation, wi is the weight of edge i and Path(e1, e2, …, ek) is a 
path and (w1, w2, …, wk) are weights of the edges on the path. The legitimate value 
of the parameter r in Eq. (6.5) can range from 1 to . The parameter r affects the 
path weight significantly. When r is equal to 1, the path weight is the sum of all 
edge weighs along the path; when r is equal to 2, the path weight is the Euclidean 
distance calculation of the path weight; and when r is equal to , the path weight 
is equal to the maximum edge weight among all involved edge weights. 
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Path length is defined as the number of edges along a path. For instance, the 
length of Path(e1, e2, …, ek) is k. 

kPathL )(  (6.6) 

Notice that the concept of the path length is quite different from that of the 
path weight even though they have a very close relationship. The path length is 
not dependent on the edge weights along the path whereas the path weight is cal-
culated based on these edge weights. 

A graph is q-triangular with the Minkowski r-metric if and only if all possible 
weights of these paths in a network, whose path lengths are smaller than and equal 
to the parameter q, meet the triangle inequality (See Eq. (6.7)): 
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In G(V, E), the valid value of q can range from 1 to n-1. The associated 
weights of eab, ebc, …, efg are wab, wbc, …, wfg respectively. Parameter m is the path 
length. 

The two parameters q and r can determine a family of similar Pathfinder as-
sociative networks respectively. The Pathfinder associative network family is also 
called isomorphic Pathfinder associative networks. 

EGi is a path-length-i matrix. In the matrix, if there is a path from node l to 
node k with path length i, then the element i

ke1 is equal to 1; otherwise 0. 
Now let us define another very important concept: path-length-i minimum 

weight matrix which contains the most economical weights for a certain path 
length in a network. For the definition, see Eqs. (6.9) and (6.10): 
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W1 is the original weight matrix W. Parameter n is the number of all nodes in 
a network. The above two equations are used to calculate the weight of a path 
when the path length increases by 1. Observe that if path growth in a network 
happens, it should consider all possibilities of path growths and select the most 
economical one from all possible paths. For instance, an existing path with path 
length i will increases by 1, that is, convert Wi to Wi+1. It first should consult W1 to 



determine all possibilities for path growth. For weight i
jkw , the possible paths with 

path length i+1 are 1
1je and ,1
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nke  are considered if 

the corresponding 1
jme  exists for the path increase. The next step is to use the 

Minkowski r-metric to calculate new path weights for all newly generated paths 
with path length i+1. And the final step is to select the best (the lowest weight) 
path from the all newly calculated path weights. The reason that for the weight 
wmk, m can not be equal to k, and for the weight wjm, m cannot be equal to j, is that 
adding either wkk or wjj can not result in an increase in the path length. In other 
words, the path length from a node to itself is defined as 0. 

In the path-length-i minimum weight matrix, the meaning of an element i
jkw  

is defined as the lowest weight of a path whose path length is exactly equal to i 
that starts from node j and ends in node k in a network. The path-length-i mini-
mum weight matrix Wi (1<=i<=n) is introduced to calculate the path-length-i 
complete minimum weight matrix Di (See Eqs. (6.11) and (6.12)). 
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Di is also a square matrix like Wi. The path-length-i complete minimum 
weight matrix Di is different from Wi. The former is generated based upon the lat-
ter. The element i

lkd  means the weight of a path that meets two conditions: it 

 

6.1.2 The algorithm description 

The Pathfinder associative network (PFNET(r, q)) generation algorithm is de-
scribed as follows. PFNET(r, q) means the produced Pathfinder associative network 

6.1 Pathfinder associative network properties and descriptions      131 

comes from one of a group of paths whose path are lengths equal to 1, 2, 3,…, i, 
respectively, and its weight is the lowest among weights of these paths. Notice 
that when value of i increases, values of the elements in Di may decrease. That is 
because the number of the paths from any node A to another B increases due to in-
crease of i. As a result, the possibility of finding a lower path weight increases. If 
it happens, according the algorithm, the path with the lower path weight would re-
place the old path in Di, which leads to lower values of elements in Di. When i is 
equal to n-1, it reaches its maximum because linking a node to itself in a network 
does not construct a valid edge. 
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is q-triangular with the Minkowski r-metric. W is an input original weight matrix, 
PF matrix is an output matrix of the generation algorithm, and pij is an element of 
PF (1 i, j n). The algorithm is adapted from the original Pathfinder algorithm 
(Dearholt and Schvaneveldt, 1990). The algorithm can handle both symmetric and 
asymmetric matrices. 
 
L1 Begin 
L2 Initialize PF matrix; 
L3 Input parameters r, q, and the proximity matrix W; 
L4 For m=1 To q-1 Step 1 
L5  For k=1 To n Step 1 
L6   For l=1 To n Step 1 
L7  
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L8   Next l; 
L9  Next k; 
L10 Next m; 
L11 For k=1 To n Step 1 
L12  For l=1 To n Step 1 
L13  q

lkd =MIN( q
lklklk www ....,,, 21  ); 

L14  Next l; 
L15 Next k; 
L16 For k=1 To n Step 1 
L17  For l=1 To n Step 1 
L18   If wlk=

q
lkd   Then let plk =wlk; 

L19   EndIf; 
L20  Next l; 
L21 Next k; 
L22 End. 
 

In the algorithm, from lines L2 to L3 all variables are initialized, and parame-
ters and proximity matrix are received. Lines L4 to L10 calculate a group of the 
path-length-i minimum weight matrices Wi, which will be used as inputs for calcu-
lation of the path-length-q complete minimum weight matrices Dq. Lines L11 to 
L15 compute the path-length-q complete minimum weight matrices Dq. Lines L16 
to L21 examine whether each of the edges in the matrix Dq meets the condition. If 
so, these edges are moved from the matrix Dq to the final PF matrix. The condi-
tion is that the weight of an edge from the matrix Dq is equal to that of the corre-
sponding weight from W1. If the condition is satisfied, it suggests that the edge 
from Dq has the same weight as the weight of the corresponding edge in W1 but 
different path lengths. Notice that as the value of parameter q increases, fewer 
elements in the matrix Dq may be qualified for the condition according to the 



algorithm because more paths whose path lengths are larger than 1 and path 
weights are lower than those in W may be found. If so, they replace the old ones. 
Consequently fewer edges in W have chances to be added to PF. 

The inputs for this generation algorithm are the two parameters r, q, and ma-
trix W, which describes the proximity among objects. Here n is the number of all 
nodes in the network. The output of the algorithm is the Pathfinder matrix PF 
which may be employed to draw a Pathfinder associative network graph in the 
visual space. Parameter l, k, and m are control variables. We have 1=< q =< n-1, 
and 1=< r =< . Notice that this presented algorithm does not have an edge label-
ing feature. If there are multiple paths that have the same lowest path weight and 
the same path length, all of these paths are included in the final Pathfinder associa-
tive network. 

Observe that the Pathfinder algorithm generates a new network with the same 
nodes as the original matrix W but a sub-set of the edges of the original matrix W. 
In any case, the edges with the lowest weight in the original matrix W will be in-
cluded to PF because no other paths in the network can have path weights which 
are lower than these edges and the nodes linking the edges must be in the final re-
sult network. If an edge links two independent sub-graphs and it is the only edge 
to the two graphs, then the edge is included in the final result network regardless 
of its weight. 

Now we give an example to illustrate the generation process of the Pathfinder 
associative network. The given example proximity matrix W is symmetric (See 
Eq. (6.13)). All diagonal elements of the matrix are 0. The corresponding graph 
sees Fig. 6.2. 
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For simplicity, the two parameters r and q for the Pathfinder associative net-
work are set to  and 2 or PFNET ( , 2). First, the algorithm needs to calculate 
path-length-2 minimum weight matrix W2. For instance, we can calculate 2

12w  as 
follows. 
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Fig. 6.2. Original network display of an example 
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Following a similar calculation procedure, we can calculate the rests of ele-
ments in W2. The final result sees Eq. (6.15). 
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The next step is to calculate the path-length-2 complete minimum weight ma-
trix D2 based on both W and W2: Compare ijw  and 2

ijw  in both W and W2, find a 

minimum weight, and put the minimum weight into 2
ijd . For results of the calcula-

tions, see Eq. (6.16). D1 is equal to W, so we don’t need to calculate it. 
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The final step is to compare D2 and W, identify the edges which satisfy the 
conditions 2

ijd =wij, then put the satisfied edges into the PF matrix. It is clear that 
edges e12, e14, e16, e23, e34, e36, e45, and e56 meet the condition and should be added 
to the PF matrix (See Eq. 6.17). As a final result, the final Pathfinder associative 
network is shown in Fig. 6.3. This network demonstrates two characteristics of the 
triangle inequality: No link violates the triangle inequality within path length 2 in 
terms of Minkowski -metric, and there may be some links violating the triangle 
inequality when their path lengths are longer than 2. 
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Fig. 6.3. Final display of PFNET( , 2) 
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6.1.3 Graph layout method 

Unlike other information visualization approaches such as the self-organizing 
maps, DARE, TOFIR and so on, the Pathfinder associative network has a unique 
problem of graph drawing in a visual space. The problem is raised because logic 
relationships of nodes in PFNET are separate from physical relationships of the 
PFNET nodes in the visual space. Logic relationships of nodes in PFNET are de-
scribed in the matrix (PF). But PF does not illustrate how these nodes are pro-
jected onto the visual space. The physical relationships of these nodes refer to 
nodes’ positions and locations, and edges linking these nodes in a visual space. 
For instance, nodes A and B are linked in PF, A and B can be positioned anywhere 
in a visual space as long as they are connected in the visual space. Graph drawing, 
an independent research field, addresses how to effectively arrange connected 
nodes in a low visual space while preserving logic connections and relationships 
of the nodes. Issues regarding aesthetics for drawing an undirected graph include 
graph symmetry, minimal edge crossing, bending of edges, uniform edge length, 
reflection of inherent symmetry, conformation to the frame, and uniform vertex 
distribution (Battista et al., 1994; Fruchterman and Reingold, 1991). 

A spring model for graph drawing was introduced by Kamada and Kawaii 
(1989). The model simulates a dynamic spring system where an edge in a graph 
stands for a spring, and a ring for a node in the graph. Two springs are linked by a 
ring in the system. When new springs are added to the system (or existing springs 
are deleted from the system), or an external force is imposed upon the system, the 
previous balance of the spring system is no longer maintained. The system reaches 
new equilibrium when the energies of all springs are released to the minimum 
status. This optimistic status is used to draw the graph in the visual space. 

The energy of a spring is given in the following equation: 
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Where X is the spring length from the position of its free status to the position 
of its stretching status, and K is the force constant of the spring which is primarily 
determined by its material quality. 

Eq. (6.19) can be extended to a multiple spring system. Given a dynamic 
spring system in which n nodes are mutually linked by springs. Denote pi (i=1, 2, 
3,…, n) a node in a graph. The energy of the whole system is defined as: 

ijjiij

n

i

n

ij
lppkE

1

1 1 2
1  (6.19) 

Where lij is the original length of the free spring determined by pi and pj, kij is 
the force constant of the corresponding spring, and | pi - pj | is the distance be-
tween pi and pj in the graph. In order to achieve the equilibrium status in which 
lengths of all springs are the shortest, E must reach its minimum value. 
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Finally, use the Newton-Raphson method (Rowe et al., 1987) to find out solu-
tions to all variables in the equation which determine positions of all involved 
nodes in the graph. 

6.2 Implications on information retrieval 

Application of a PFNET to a domain problem requires identifying two basic, nec-
essary, and indispensable elements from application domain: the first is the objects 
which are used as nodes in the network; and the second is the proximity relation-
ship between the two objects which is used to form a link between the two objects. 
For certain types of objects, it may correspond to multiple methods to define their 
proximity relationship between the two objects. Different types of objects may 
have different proximities. Proximity can be procured by either a human-
interference method or an automatic computation method. It is not surprising that 
different objects and proximity methods can lead to different Pathfinder associa-
tive networks. 

Clearly defining objects and the proximity method are essential to construc-
tion of a Pathfinder associative network. 

6.2.1 Author co-citation analysis 

Author co-citation refers to the phenomena occurring when the authors of two dif-
ferent papers both co-cite the same paper(s) in their works. The concept is also 
called bibliographic coupling. Usually papers are cited to demonstrate previous re-
lated research works, or support the author’s arguments. It is a very common and 
natural phenomenon that two authors cite the same paper(s) if they address the 
same topic or a related topic. As a supplement to subject analysis, author co-
citation analysis is unique and important because the cited documents have a close 
semantic relationship with a citing document. Views, themes, ideas, concepts, 
theories, issues, problems, trends, approaches, and people from the cited docu-
ments are naturally embedded in the contexts of the citing paper. It is believed that 
the concepts and conceptual relations based on cited documents have an advantage 
over concepts and conceptual relations created from conventional co-term analysis 
(Rees-Potter, 1989). 

Author co-citation analysis uses co-citation data to structure and summarize a 
scientific field which can be depicted in a co-citation network or a collaboration 
graph. It is apparent that in this case the objects, one of the two basic elements for 
the Pathfinder associative network construction, are documents which cite or are 
cited by each other in author co-citation analysis. There are various approaches to 
define proximity relationship between documents in co-citation analysis. Prox-
imity relationship between two documents is used to produce a document-
document proximity matrix providing the input for the Pathfinder associative net-
work generation algorithm. 
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The first approach, the cosine similarity measure, was described in Eq. (6.20) 
(Chen and Morris, 2003). 
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In Eq. (6.20), cit(x) denotes the number of all citations of a document x and 
cocit(x, y) stands for the number of co-citations that both document x and docu-
ment y cite. Here both di and dj are two citing documents in a document collection. 
The equation suggests that the proximity or similarity between two documents in-
creases if the number of citations that the two documents co-cite grows, and vice 
versa. And the proximity or similarity between two documents increases if the 
number of all citations for either of the documents decreases and the co-cited 
documents stay the same, and vice versa. 

The second proximity approach is called the Jaccard or Tanimoto similarity 
measure. See Eq. (6.21). It was used in co-citation analysis study (Schneider and 
Borland, 2004; Schneider, 2005). Definitions of cit(x) and cocit(x, y) in Eq. (6.21) 
are the same as these in Eq. (6.20). The difference between the two equations re-
flects in their denominators, or the way that they normalize co-citations. 
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The author co-citation Pathfinder network can be used to visualize progress in 
knowledge domain (Chen, 2004). In order to illustrate the progress, a time interval 
was divided into a number of meaningful time slices (saying one year, or five 
years), and an individual co-citation Pathfinder network was derived from each 
time slice. The final time series of co-citation networks was generated when all 
time slices were connected according to their time sequences. That is, time slices 
consisted of a continuous time series. In the time series of co-citation Pathfinder 
associative networks, salient changes between neighboring time slices were identi-
fied and scientific research evolution was visualized and analyzed. In the co-
citation Pathfinder associative networks, a node size, and width and length of a 
link were proportional to the number of the citations of a document, co-citation 
similarity value respectively. And nodes in the network were classified as land-
mark nodes which had significant attribute values; Hub nodes that were the widely 
co-cited documents; and pivot nodes that were joints between different sub-
networks. 

The third proximity approach is the Pearson r correlation co-efficient. It is 
widely recognized and used in author co-citation analysis. It is an easily under-
stood concept. Many commercial statistical packages support the Pearson r corre-
lation co-efficient. Author co-citation matrices can serve as input to principal 
component analysis as well as multidimensional scaling and hierarchical cluster-
ing routing. The Pearson r co-efficient method can produce highly intelligible re-
sults (White, 2003). 
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Correlation analysis addresses measuring the association degree between two 
variables. In the Pearson r correlation co-efficient (or Pearson product moment 
correlation co-efficient), the two variables should have a linear relationship, and 
either of the variables is normally distributed. They should be interval or ratio. 
The Pearson r can be computed from Eq. (6.22). 
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Where n is the number of observations, X and Y are two variables. 
Result r ranges from -1 to 1. If the result r is larger than 0, it suggests that 

there is a positive relationship between the two variables. If the result r is smaller 
than 0, it suggests that there is a negative relationship between the two variables. 
If the result r is equal to 0, it suggests that there is no relationship between them. 
For instance, result r (from 0.9 to 1) indicates very high correlation, from 0.7 to 
0.9 high correlation, from 0.5 to 0.7 moderate correlation, from 0.3 to 0.5 low cor-
relation, and from 0 to 0.3 little correlation. 

However, there are debates over application of the Pearson correlation co-
efficient approach to co-citation analysis (White, 2003). The issues include: Pear-
son r becomes unstable when smaller co-citation count matrices are combined; 
The treatment of diagonal in matrices from which measures like r are produced 
remains a problem; Pearson’s r is supposed to handle data with normal distribu-
tion while author co-citation data is highly skewed; The standard significance test 
for r assumes random sampling of independent observations from population; And 
so on. 

6.2.2 Term associative network 

Term co-occurrence analysis addresses term co-occurrence behavior in a full-text 
document. Keywords appearing together in a predefined length of text in the same 
document are regarded as the co-occurrence terms. 

Term co-occurrence information can be utilized to produce the Pathfinder as-
sociative term network which may be utilized to explore and discover related 
terms in a domain that users are not familiar with. For instance, the idea, the so-
called “term seeding“ method (Buzdlowski et al., 2001), is that a user starts with a 
seed term as a starting point, then it can trigger other associative terms that most 
frequently co-occur with the seed term. Documents including the seed term are 
systematically examined to return co-occurred terms. 

Term Pathfinder associative networks are also expected to help users to better 
formulate their queries. 

It is clear that objects of term Pathfinder associative networks are terms and 
the proximity is the relationship among terms in the full-text contexts. There are 
several options to define such proximity in the full-text contexts. 

The first proximity method is based on term adjacency information. In analyz-
ing provided texts, all stop words are filtered by a predefined stop word list, and 



140      Chapter 6 Pathfinder Associative Network 

the remaining words are stemmed. Term pair proximity or similarity is calculated 
as the sum of values added when they are adjacent, or occur in the same sentence, 
paragraph, or documents. For each of the term pairs, similarity is increased by 5 if 
they are adjacent in the same sentence, 4 for a nonadjacent term pair in the same 
sentence, 3 for a nonadjacent term pair in the same paragraph, 2 for a nonadjacent 
term pair in the same section/chapter, and 1 for a term pair in the same document. 
The results of this processing lead to a final term-term proximity matrix that is 
used for construction of a term PFNET (Fowler and Dearholt, 1990). The term co-
occurrence matrix is organized as follows. Both the columns and rows are defined 
as terms respectively. The order of terms in both the column and row are the same. 
The interaction of a column and a row in the matrix is the term proximity value 
between two terms. 

The second proximity method is based on term probability in a full-text. As-
sociation between two terms in a full text can be calculated by the equivalent in-
dex (Turner et al., 1988; Schneider and Borland, 2004), see Eq. (6.23). 
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Where fij is the number of co-occurrences of term ti and term tj in citation con-
texts, both fj and fi are occurrence of term ti and term tj respectively. S(ti, tj) indi-
cates the probability of term ti (tj) appearing simultaneously in a set of the citation 
context with term tj (ti). S(ti, tj) is also called a coefficient of mutual inclusion be-
cause of this reason. Eq. (6.23) can be used to produce the term-term proximity 
matrix. 
 

6.2.3 Hyperlink 

The PFNET technique can be applied to Internet information representation. In 
this case, the objects of the Pathfinder associative network are Web pages and 
proximity is strength of a hyperlink which connects Web pages. 

In fact, there are two approaches to construct a PFNET based on hyperlink 
strength. The first one is similar to the author co-citation analysis method. The 
number of co-cited hyperlinks can be used to measure the similarity between two 
Web pages. The cell value in the webpage co-citation matrix is defined as the 
number of the same Web pages that two Web pages co-cite. The webpage co-
citation matrix should be symmetric. This is because if webpage A cites webpage 
C and webpage B also cites webpage C, the direction of a citation does not play 
any role. Therefore, the final PFNET is an un-directed graph. 

The second approach is based on hyperlink connections between two pages 
(Chen, 1997). In this case, a webpage connection matrix is defined as follows. The 
cell value of the webpage connection matrix is defined as the number of hyper-
links that a webpage cites another webpage. It is apparent that the webpage con-
nection matrix is asymmetric. That is because if webpage A cites webpage B, it 
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does not necessarily mean that webpage B also cites webpage A, therefore, the fi-
nal PFNET is a directed graph. 

6.2.4 Search in pathfinder associative networks 

Users are allowed to search an established Pathfinder associative network (Chen, 
1999). After a query is submitted to the network, the relevance between a query 
and a document is calculated by the Pearson correlation coefficient. Then, search 
results can be demonstrated or highlighted on the network. The relevance magni-
tude of a search query and a document is indicated by the height of a raising spike 
from the document sphere. The longer a spike is, the more relevant it is to the 
document; and vice versa. Users can also browse the Pathfinder associative net-
work at will. Clicking a document sphere, users can view its contents in detail. 
Documents on the center ring in a Pathfinder associative network appear to be 
more generic than leaf-documents on a branch. 

Query search in a Pathfinder associative network can be a different scenario 
(Fowler et al., 1991; Fowler and Dearholt, 1990) where both a query and a docu-
ment are converted into two Pathfinder associative networks respectively. The 
similarity between a query and a document hinges on the similarity between the 
two Pathfinder networks. The query process can begin with the user’s entry of a 
natural language request for information. Query revision can be accomplished by 
deleting nodes, entering more texts, or dragging any terms that the system display 
to the query Pathfinder associative network. Keyword adjacency information in 
both a natural language based query and a full-text based document can be em-
ployed to generate a query Pathfinder network and a document Pathfinder network 
respectively. Since both a query and a document are presented in the PFNET 
form, the match technique between a query and a document is a little different 
from traditional ones. The proximity algorithm for a query network structure and a 
document network structure consists of two parts. The first part is defined as the 
ratio of the number of common terms in both a query and a document to the num-
ber of all terms in the query. It is clear that the first part only measures the term 
relevance between the query and the document. The second part is supposed to 
measure the network structure similarity between the query network and a docu-
ment network. The value of this part increases when nodes (terms) connected in 
the query network also appear closely connected in the document network. For in-
stance, the similarity value of two network structures increases by 2 when two 
terms appear in both the query and the document, and they are directly linked in 
both networks; the similarity value increases by 1 when two terms appear in both 
the query and the document, but are indirectly linked in both networks. All net-
work similarity values are summed up and the total is divided by 2 times the num-
ber of links in the query to normalize the structure similarity between 0 and 1. Fi-
nally, the two parts are weighted and integrated into a final similarity value which 
is used to make a decision on whether the document is relevant to the query or not. 
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6.3 Summary 

In a Pathfinder associative network PFNET(r, q), the triangle inequality is always 
satisfied in terms of a path weight calculated by the Minkowski r-metric within 
path length q. Characteristics of a Pathfinder associative network are determined 
by the two important parameters, r and q. The weight of a path is affected by the 
Minkowski r-metric while path length is affected the parameter q. PFNET can 
have systematic variations when the two parameters q and r are varied. The 
changes of these two parameters can impact the Pathfinder associative network 
complexity. The complexity of the network decreases as either or both of these 
two parameters increases. In other words, when the parameters r and q are equal to 
their maximum values  and n-1 respectively (n is the number of all nodes in a 
network), the PFNET is the simplest and most economical network. However, in-
crease of q would result in an increase of computational complexity. 

The strength of PFNET lies in reveling accurate, detailed, and specific con-
nections of nodes in a network. 

The weaknesses of the Pathfinder associative network include its computa-
tional complexity, which may prevent PFNET from not only visualizing a large 
dataset, but also dynamically modifying a PFNET caused by interactions between 
users and the network. The PFNET generation algorithm requires many large in-
termediate matrices to yield the final result. This may lead to occupying a large 
amount of memory to support the generation of these matrices. Another disadvan-
tage of PFNETs in the present state of development is that people have no way of 
knowing the features upon which similarity judgments are made, which results in 
that the semantic content of links is not easily discernible (Dearholt and Schvane-
veldt, 1990). It is clear that PFNET cannot generate a local visual configuration 
based users’ individual information needs and it only produces a global overview 
for a data collection. 

Since the logic relationships of nodes in a Pathfinder associative network are 
separate from its physical relationships of the nodes, the logical relations are not 
directly assigned to a coordination system of the visual space. It leads to a graph 
drawing problem when the Pathfinder associative networks are projected onto a 
2D or 3D visual space. Fortunately, people have found an effective solution to the 
problem. 

The Pathfinder network technique is very effective and efficient for display of 
complex relationships among objects such as sophisticated semantic networks. As 
an information visualization means, it can be applied to a wide spectrum of infor-
mation retrieval environments, ranging from information searches, author co-
citation analysis, term co-occurrence analysis, thesaurus construction, to the Inter-
net information representation. 

 


