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Research Trends in the Intersection of Animal Genetic Breeding
and Artificial Intelligence: A Bibliometric Analysis

WANG Ning', ZHANG Bo’, ZHANG Hao”

(1. Library of China Agricultural University, Beijing 100193, China;
2. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China)

Abstract: This study explores the research landscape at the intersection of artificial intelligence (Al) and animal genetic
breeding, aiming to identify key academic and technological trends to provide a reference for future research. Utilizing
bibliometric analysis, the study integrates data from SCIE-indexed journal articles and incoPat patents to examine annual
output, institutional collaboration, and thematic evolution. VOSviewer, CiteSpace, and ITGInsight were employed to construct
knowledge maps and identify thematic hotspots. Results indicate 2019 as a critical turning point with accelerated growth
in publications and patents. China ranks first globally in both the number of publications and patent applications. However,
collaboration patterns differ between literature and patents: academic research features international networks—primarily
among China, the U.S., and Brazil—while patent activity is dominated by domestic institutions, with limited cross-border
cooperation. Thematic analysis reveals that academic research focuses on the optimization of machine learning and deep
learning models for trait prediction, genetic analysis, and genomic selection. Patents emphasize the integration of Al into
intelligent management systems covering the full lifecycle of livestock production. Although Al has improved the accuracy
and efficiency of animal breeding, challenges remain—namely, limited model generalizability, lack of standardized data,
and hardware compatibility issues. Future efforts should prioritize multi-source data integration, lightweight algorithm
development, and cross-scenario application to advance full-process automation and support the sustainable transformation of
animal husbandry.

Keywords: Bibliometric analysis; Animal genetics breeding; Artificial intelligence; Research highlights and fronts

(FriEspit: R %)

~ 145 - L OFY ¥

https://www.cnki.net



