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基于文献计量分析的动物遗传育种与
AI 交叉领域研究态势
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（1. 中国农业大学图书馆，北京 100193；2. 中国农业大学动物科学技术学院，北京 100193）

摘 要：本文探究了动物遗传育种与人工智能（Artificial Intelligence，AI）交叉领域的研究进展，旨在揭示

该领域学术研究与技术应用的研究热点与前沿态势，为后续研究提供参考。研究通过文献计量分析方法，

整合 SCIE 论文和 incoPat 专利数据，从年度分布、机构合作网络及主题演化等维度系统分析趋势，并利用

VOSviewer、CiteSpace 和 ITGInsight 构建知识图谱识别热点布局。结果表明，2019 年为动物遗传育种与 AI
领域发展的转折点，论文与专利数量均进入快速增长阶段。中国在论文和专利总量上居全球首位，但合作模

式呈现差异：论文领域形成以中国、美国、巴西为主的国际合作网络，而专利合作以本土机构为主，跨国协

作薄弱。研究主题上，论文集中于机器学习与深度学习等模型在性状预测、遗传机制解析与基因组选育等方

向的优化与创新；专利则侧重于运用 AI 技术开发面向畜禽全生命周期的智能化管理系统。尽管 AI 技术显著

提升了动物遗传育种的精准性与效率，但其应用仍受限于模型泛化能力、数据标准化与硬件兼容性等瓶颈。

未来需加强多源数据整合、轻量化算法开发及跨场景技术融合，推动智能育种系统向全流程自动化发展，为

畜牧业可持续发展提供技术支撑。
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动物遗传育种技术的持续创新对于应对 2050 年全

球动物蛋白需求增长 70% 的挑战至关重要 [1]。人工智

能（Artificial Intelligence，AI）凭借其在高维基因组

数据解析与非加性遗传效应捕捉方面的优势，已成为新

一代育种体系的关键支撑。研究表明，机器学习可提升

基因组预测准确率 19% 以上 [2]；随机森林与支持向量

机可提升关键基因标记筛选效率 [3]；多组学融合 AI 技

术可增强基因组 - 环境互作表型预测模型的精度 [4]；AI

亦在疾病识别与监测方面展现出潜力 [5]。总体而言，AI

已突破性能测定、基因挖掘、育种值评估与配种优化等

瓶颈，可推动“生物技术 + AI + 大数据 + 信息技术”

驱动的“育种 4.0”时代的到来。

随着 AI 应用的不断深化，动物遗传育种领域的研

究成果与视角日益多元。为助力科研工作者把握学科前

沿与发展趋势，为理论与实践提供决策依据，亟需对该

领域的研究热点与前沿进行梳理。文献计量学通过量化

论文主题分布、合作网络及演化轨迹 [6-9]，结合专利技

术属性与时空分布分析 [10-11]，能客观描绘学术研究与技

术布局的全景。基于此，本文整合 SCIE 论文与 incoPat

专利数据，通过知识图谱构建，从时间、机构及主题演

化等多方面剖析交叉领域的发展态势，旨在明确研究前

沿，优化项目布局，并为该领域的持续深化提供阶段性

总结与决策参考。

1 数据来源与研究方法

1.1 数据来源    本研究数据来源于 Web of Science 核心

合 集 SCIE（Science Citation Index Expanded）的 论 文

及 incoPat 全球专利数据库，聚焦动物遗传育种与 AI

交叉领域，通过专业检索策略与专家筛选，截至 2025

年 5 月 1 日，共获取文献 408 篇、专利 115 件。

1.2 研究方法    本研究采用文献计量学与科学知识图

谱分析方法，系统构建科技论文与专利数据的分析框
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架。运用美国德雷塞尔大学陈超美教授团队研发的

CiteSpace，其基于引文空间算法可有效探测学科演进

路径与前沿趋势 [12]；采用荷兰莱顿大学 Eck 教授团队

开发的 VOSviewer，该工具在共现网络构建与可视化方

面具有显著优势 [13]；同时选用 ITGInsight 专业科技文

本挖掘系统进行专利情报分析 [14]。

2 结  果

本文首先对论文与专利的年度产出趋势及主要国家

和机构的分布进行量化分析，以勾勒该交叉领域的基本

特征；随后，以论文被引频次与专利价值度为指标，评

估文献的关注度与影响力，揭示研究热点；接着，构建

了国家和机构合作网络，客观呈现各参与主体的学术地

位与协作模式；最后，绘制出主题演化与前沿态势图谱，

深入剖析核心学术议题与技术布局，归纳总结未来研究

方向。

2.1 总 体 趋 势    根 据 SCIE 和 incoPat 检 索 结 果， 自

2019 年起，论文与专利申请量快速增长，标志着动物遗

传育种与 AI 技术的交叉已进入快速发展阶段。从图 1A

可以看出，发文量年度趋势可分为 2 个阶段：2015—

2018 年为学科交叉的萌芽期，年发表论文 13~20 篇；

自 2019 年起进入技术融合的爆发期，论文量迅速攀升，

年均增速达 7.67%。2018 年，美国科学院院士、玉米

遗传学家 Edward Buckler 教授首次提出“育种 4.0”——

以分子设计育种为基础，融合 AI 等技术，实现育种数

据的高效采集、存储与分析，为作物育种决策提供智能

支持并推动精准高效发展 [15]。该概念发布后，动植物

智能育种研究热度大幅提升，2019 年发文量显著激增

也充分验证了这一趋势（2025 年数据因完整性未纳入

分析）。

专利申请趋势亦呈现类似态势（图 1B）：2014—

2018 年年均仅有 1~2 项申请，技术储备处于起步阶段；

自 2019 年起申请量迅速攀升，截至 2024 年达 36 件，

比 2019 年增长近 7 倍，年均增幅 6.20%。尽管 2022 年

出现短期波动，但整体专利增长势头持续，表明 AI 技

术在动物遗传育种中的应用效能正在逐步显现。

2.2 主要国家与机构    中国已在动物遗传育种与 AI 交

叉领域实现科研与专利“双领先”，尤其以中国农业科

学院与中国农业大学的产出更为突出。论文方面（图

2A），中国以 104 篇位居全球首位，美国 71 篇位列

第二，其余国家均不足 40 篇；机构层面（图 2B），

中国农业科学院（24 篇）、中国农业大学（22 篇）和

中国农业农村部（20 篇）位列全球发文量前三，且为

TOP10 机构中发文量突破 20 篇的单位。美国则有威斯

康星大学麦迪逊分校（18 篇）、乔治亚大学（10 篇）

和美国农业部（10 篇）入围前十。专利申请方面（图

2C、2D），中国贡献 87 件，占比 73.04%；前 9 位申

请主体悉数来自中国，其中中国农业大学（9 件）与中

国农业科学院北京畜牧兽医研究所（5 件）位居前列，

且 88.89% 的机构为高校及科研院所。相比之下，美国

虽在论文发表上排名第 2 位，但专利布局相对薄弱。

2.3 论文被引频次与专利价值度    被引频次作为衡量学

术论文质量与影响力的重要指标，不仅在学术共同体

中具有广泛的认同，也是评估学者、研究机构及学术

期刊影响力的重要工具 [16]。表 1 统计显示，被引频次

TOP10 文献集中于机器学习与深度学习模型在基因组

育种预测中的应用，同时涉及遗传关联解析、动物行为

识别及体重预测模型构建等主题，反映出该领域研究热

点的集中指向。

在专利价值评估方面，本文基于 incoPat 专利数据

图 1  论文发表趋势（A）与专利申请趋势（B）
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库构建的多维度评价体系，依托专利类型、同族数量、

引证频次、权利要求范围等 20 项技术指标，通过加权

算法模型对专利技术价值进行量化，价值度 ≥7 的专利

界定为高价值专利 [17]。图 3 所示价值度 ≥9 的专利聚焦

于结合全基因组信息与机器学习、深度视觉与行为监测、

自适应优化算法，构建集基因组选配、分子标记鉴别、

表 1  论文被引频次 TOP10 情况

图 2  论文发文量 TOP10 国家（A）、机构（B）与专利申请 TOP9 国家（C）、机构（D）
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序号 论文标题 年份 被引频次 , 次

1
Genomic prediction of breeding values using a subset of snps identified by three machine learning methods
基于三种机器学习方法筛选的 SNP 子集进行基因组育种值预测

2018 年 139

2
Benchmarking parametric and machine learning models for genomic prediction of complex traits
复杂性状基因组预测中参数模型与机器学习模型的性能对比

2019 年 113

3
Ancestral relationships using metafounders: finite ancestral populations and across population relationships
基于元祖先的遗传关系解析：有限祖先群体与跨群体亲缘关系

2015 年 109

4
Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes
深度学习与参数模型及集成方法在复杂表型基因组预测中的对比

2020 年 108

5
Behaviour recognition of pigs and cattle: Journey from computer vision to deep learning
猪牛行为识别：从计算机视觉到深度学习的演进

2021 年 105

6
Weight prediction of broiler chickens using 3D computer vision
基于三维计算机视觉的肉鸡体重预测

2016 年 99

7
Development of an early warning algorithm to detect sick broilers
肉鸡疾病预警检测算法的开发

2018 年 93

8
A review of deep learning algorithms for computer vision systems in livestock
畜禽计算机视觉系统中的深度学习算法综述

2021 年 73

9
A 100-Year Review: Methods and impact of genetic selection in dairy cattle-From daughter-dam comparisons 
to deep learning algorithms
百年综述：奶牛遗传选择方法与影响——从母女对比到深度学习算法

2017 年 70

10
Application of neural networks with back-propagation to genome-enabled prediction of complex traits in Holstein-
Friesian and German Fleckvieh cattle
反向传播神经网络在荷斯坦牛和德系西门塔尔牛复杂性状基因组预测中的应用

2015 年 64



2025 年 第 61 卷 第 12 期                                                  Review Papers·综述

- 137 - 

表型监控及饲料与近交优化于一体的智能化动物育种系

统。从申请主体看，高校与科研机构为主要发明人，企

业专利多以合作方式申请；从时间分布看，2023—2024

年高价值度专利达 8 项，2023 年以前仅 3 项，表明近 2

年内新申请专利的技术价值显著提升。

2.4 合作情况

2.4.1 论文国际及机构合作情况    基于 VOSviewer 构建

了科研合作网络图谱（图 3），其中节点代表发文量，

连边宽度代表合作强度，节点颜色代表聚类得到的作

者所属群 [18]。国家合作的网络结构呈现 3 大集群（图

3A）：集群 1 以中国（发文量最多）和美国为核心，

包括澳大利亚、加拿大及巴西；集群 2 以意大利为主导，

涵盖德国、法国、英国等欧盟国家；集群 3 以荷兰与印

度为主体，包括西班牙、挪威等国。其中，中国、美国

和巴西 3 个国家相互间合作最为紧密。

在机构合作层面（图 3B），中国农业大学、中国

农业科学院及美国威斯康星大学构成发文量前 3 位的研

究主体。中国农业大学除与北京市农林科学院保持本土

合作外，还与意大利帕多瓦大学、加拿大圭尔夫大学及

阿尔伯塔大学形成跨国合作体系。数据分析表明，上述

3 所机构在学术产出规模及国际合作广度方面均处于领

域领先地位。

使用 ITGInsight 软件对专利数据进行聚类分析，

构建发明人与专利权人合作图谱（图 4），其中节点代

表发明人专利产出规模，连边宽度代表合作频次，不同

类团代表合作群体。图 4A 显示，发明人合作网络形成

7 类群体。其中，包含丁露雨等 6 位发明人的类团，隶

属于北京市农林科学院信息技术研究中心；涵盖李俊雅

图 3  论文国家合作（A）和机构合作（B）情况

表 2  价值度达到 9 分及以上的专利情况

序号 标题 申请人 申请日

1 一种基于全基因组 SNP 信息的华西牛基因组选配方法及应用 中国农业科学院北京畜牧兽医研究 2024 年 7 月 9 日

2 一种基于 GCS-YOLO 算法的牛场多目标检测方法及系统 山东农业大学 2024 年 4 月 3 日

3 基于混合遗传算法优化牛饲料配比的方法 华南农业大学 2024 年 3 月 21 日

4 基于运动传感器的家禽活动行为监测方法与系统
江苏省家禽科学研究所；和盛食品集团
有限公司

2024 年 3 月 20 日

5 基于 XGBoost 模型的 20 个藏羊品种分子鉴别的 SNP 位点组合及应用 中国农业科学院北京畜牧兽医研究所 2023 年 11 月 20 日

6 一种生猪养殖场多源数据异常检测与不良数据修正方法 山东农业大学 2023 年 10 月 20 日

7
一种基于卷积神经网络预测哺乳动物家畜增强子序列的装置、方法及计算
机可读存储介质

中国农业大学 2023 年 9 月 8 日

8 基于叠层笼养模式下鸡异常粪便的疾病早期预警溯源系统 中国农业大学 2023 年 4 月 27 日

9 一种基于计算机视觉的母猪哺乳行为细粒度识别方法 南京农业大学 2022 年 9 月 15 日

10 一种基于指派问题解法控制家禽近交的方法 中国农业大学 2021 年 4 月 25 日

11 提高黄羽肉种鸡合格种蛋数的选育方法、模型及选育系统
江苏兴牧农业科技有限公司；南京农业
大学；江苏立华牧业股份有限公司

2021 年 2 月 25 日

A B
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等 5 位发明人的类团，主要来自中国农业科学院北京畜

牧兽医研究所。图 4B 专利权人合作网络分析表明，国

内机构间合作呈现显著地域封闭性。中国农业大学与中

国农业科学院北京畜牧兽医研究所专利申请量虽居前，

但未形成合作关系。国内有效合作仅见于新希望集团内

部，尚未延伸至外部企业或高校。而跨国合作群体由

Anita Chaturvedi 等 6 位国际专利权人构成，显示出海

外机构在技术研发中的协同创新特征。

2.5 研究主题与前沿

2.5.1 论文研究主题    关键词共现分析作为文献计量学

重要方法，通过共现频次构建语义网络、高频词凸显研

究焦点、共现强度映射学科主题关联性 [19]，对学术概

念间的关联强度进行解析，进而揭示学科知识结构演化

规律与研究热点分布特征 [10-21]。使用 CiteSpace 进行关

键词聚类分析，一般认为聚类图谱中节点面积越大，热

度越高；节点外圈颜色越深，中心性越高；热度与中心

性越高，则研究主题越重要。

图 5 关键词聚类图谱显示，网络模块化指数 Q 值

为 0.496（Q>0.3），检引度指数 S 值达 0.766 2（S>0.7），

表明聚类结构显著、类团合理。研究识别出 9 个主题聚

类，包括机器学习（Machine Learning）、肉质（Meat 

Quality）、基 因 组 选 择（Genomic Selection）、预 测

（Prediction）、AI、 识 别 模 式（Spotting Pattern）、

基 因 组 选 配（Genomic Mating）、 深 度 学 习（Deep 

Learning）、遗传力（Heritability）。其中，机器学习、

基因选择、基因预测、深度学习等节点兼具高热度与高

中心性，构成领域重要的研究主题。

根据以上 9 个主题，收集相应文献并按引用次数

降序排列，采用人工研读标题与摘要、结合专家评议

标注研究方向并参照正文内容，提炼各主题下的主要

研究方向。

机器学习：该主题聚焦算法驱动的育种范式转型。

采用集成学习（XGBoost、SVM）与深度学习（CNN）

模型突破传统线性方法对非线性性状预测的限制 [22-23]，

融合近红外光谱（NIRS）与傅里叶红外光谱（FTIR）

技术实现基因型无创鉴别与生理指标解析 [24-25]，并通过

超低密度 SNP 芯片（20~50 个标记）同时满足遗传多

样性保护与精准个体鉴定需求 [26-27]。

肉质：该主题聚焦多模态数据融合的性状评价体

系。结合近红外光谱与化学计量学对肉质成分进行无损

检测 [25,28-29]，基因组选择模型优化遗传育种值估算 [30]，

应用结构方程模型解析脂肪酸代谢对大理石花纹的遗传

调控 [31]，并利用 CHAID 决策树筛选关键生产变量构建

分类模型 [32]，实现客观化、标准化的肉质育种评价框架。

基因组选择：该主题聚焦复杂性状解析的技术革

新。通过深度残差网络（ResNet）捕捉非加性遗传效

应，显著提升预测精度 [33-34]，结合群体分层与表型方

差控制的训练集优化策略增强模型的普适性 [35-36]，利用

Elastic‐Net 算法在低密度芯片上精准筛选标记并填补基

因型数据 [37]，进而在多物种基因组交配设计中于控制近

交率的前提下最大化遗传增益 [38-39]。

预测：该主题聚焦多维数据赋能的遗传评估。该

主题下建立基因组 - 表型 - 环境多元预测体系，例如

线性模型（GBLUP）与非线性算法（随机森林 / 神经

网络）协同优化基因组关系矩阵 [40]；径向基函数网络

整合繁殖记录构建表型预测模型 [41]；基因型填补技术

图 4  发明人合作（A）和专利权人合作（B）情况

A B
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（fastPHASE）降低全基因组分型成本。该主题的研

究通过高维基因组数据与智能算法的深度融合，有效

增强了复杂性状的预测可靠性，为精准育种提供了方

法论支持 [42]。

AI：该主题聚焦场景化技术集成创新。通过 AI

技术构建覆盖育种全流程的技术矩阵，如随机森林 /

XGBoost 优化关键性状预测模型 [43-45]；YOLOv5 架构

实现动物表型实时量化；物联网传感数据驱动繁殖管理

智能决策 [46-47]；声纹识别突破性别鉴定技术瓶颈 [48]。

其创新价值在于打通“数据采集 - 算法解析 - 场域应用”

技术闭环，但硬件适配性与小样本建模仍是产业化落地

关键障碍 [48-49]。

识别模式：该研究主题聚焦遗传互作网络的量化解

析。通过遗传信息识别，揭示遗传 - 表型 - 环境三元互

作规律，例如遗传算法量化代谢性状与繁殖性能的遗传

相关性 [50]；结构方程模型解析初产年龄的遗传拮抗机

制 [51]；传感器网络支持发情动态监测与预警 [48] 等。

基因组选配：即以 SNP/ROH 矩阵为基础的最优贡

献选择（GOCS）算法，实现遗传增益（ΔG）与近交率

（ΔF）的协同控制 [52]，采用显性效应模型（HIBLUP）

提升生产性能 [53]，并通过多世代模拟验证交配策略的

长期稳健性 [40]，构建智能化遗传资源管控新范式。

深度学习：该主题聚焦非线性遗传机制的破译工

具。通过深度学习方法实现复杂遗传效应的深度解析，

例如改进 YOLO 架构，结合三维医学影像 / 光谱技术

实现活体动物体重 [54]、生殖表型 [55] 等非接触式精准预

测；deepGBLUP 模型提升非加性效应预测精度 [56-57]；

LSTM 网络构建热应激风险预警系统 [58]；染色体异常诊

断模型实现 SNP 数据驱动决策 [59]。其技术优势在于捕捉

显性 / 上位效应等非线性遗传规律，但受限于高质量标

注数据获取成本及模型生物学可解释性等问题 [60-61]，技

术普适性受到制约。

遗传力：该主题聚焦智能赋能的遗传参数体系。系

列研究致力于改进复杂性状遗传力量化方法，比如贝叶

斯 - 神经网络混合模型解析阈性状动态特征 [62]、全基因

组标记整合提升遗传参数估计精度 [63]、环境互作分析

建立甲烷排放遗传选择指标 [64] 等。

2.5.2 论文研究前沿    作为学科趋势探测方法，高频主题

的演化分析能够有效揭示领域主题的生命周期动态 [65]。

通过高频主题词聚类分析，不仅能识别研究热点，更

能为学科发展提供理论框架与方法论支撑。本文利用

CiteSpace 构建关键词突现图谱与时间序列图谱，系统

呈现交叉领域研究热点的演进轨迹及其前沿态势。

一些关键词如“信息”“准确性”“育种值”“基

图 5  论文主题聚类
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因参数”“性状”“随机森林”等长期保持热度，反映

了领域内的核心议题。近年来，“人工智能”和“深度

学习”等关键词迅速崛起，成为新的研究热点，表明动

物遗传育种正向着智能化、精准化转变。

 突现词时序分析表明，“计算机视觉”“支持向量

机”“人工智能”“深度学习”等技术已形成技术簇群，

其应用聚焦于肉质性状量化评估、多性状协同选择模型

构建及基因组选择精度提升等关键领域。

2.5.3 专利研究主题    本文基于 ITGInsight 软件提取高

频关键词（Top50）构建共现网络，通过模块化聚类算

法生成主题聚类图谱（图 7）。专利领域的研究热点主

题词主要聚集于神经网络、储存介质、遗传算法、计算

机、AI、基因组等。其中以“存储介质”“神经网络”

等为代表词的类团体现遗传算法与 AI 方法的融合应用，

涵盖神经网络架构优化、图像特征提取及分布式存储介

质设计等跨领域技术整合；以“人工智能”“畜牧业”

代表词的类团映射畜牧业生产场景下的 AI 技术融合。

针对这 2 个类群内的专利，通过人工研读标题和摘要并

结合专家评议，对每项专利方向进行标注，最终提炼出

各聚类的核心研究内容。

以“存储介质”“神经网络”等为代表词的类团

（G06N3/08：学习方法）：该主题聚焦 AI 算法与跨学科

技术融合，突破遗传评估与养殖监测技术瓶颈。例如遗传

算法优化深度视觉感知系统实现畜禽行为精准识别 [66-67]，

时空序列 - 图神经网络模型解析多维遗传互作机制 [66,68]，

卷积神经网络驱动基因组调控元件因果推断 [69]，构建

“算法 - 数据 - 硬件”协同的智能化技术基座。

以“人工智能”“畜牧业”代表词的类团（G06Q50/ 

02：农业）：该主题聚焦通过育种产业化构建全链条智

能决策体系的相关内容，例如全基因组 SNP 深度挖掘

支撑表型 - 基因型 - 环境多源联动选配优化 [70-72]，机器

学习融合生物信息学实现疫病风险动态预测与防控策略

自适应调整 [73]，智能算法与畜牧学原理深度耦合形成

“基因筛选 - 群体管理”技术闭环，推动经验育种向数

据驱动模式转型。

2.5.4 专利研究前沿趋势    基于 ITGInsight 软件构建动

物遗传育种领域主题词演化网络，通过提取国内外高频

主题词（Top50）揭示技术发展轨迹。网络节点代表主

题词频，连线代表共现演化关系，主题词的变化路径反

映同一主题的时序演进特征。图 8 显示，2016—2021

年技术内核聚焦神经网络、遗传算法与 AI 基础算法层；

2022—2025 年研究边界向应用场景延伸，形成“计算

机系统 - 储存介质 - 基因组技术 - 养殖场域 - 测定方法”

的复合技术生态。

基于主题词频次统计构建的突破性识别主题（图 9）

显示：神经网络、管理系统与遗传算法稳居持续性热

图 6  论文主题演进
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点；养殖场、AI 与存储设备构成近期热点，反映应用场

景的不断扩展；机器人、图像处理、预警系统及图像识

别则成为新兴主题，标志着技术集成度的显著提升。

3 结论与建议

通过对动物遗传育种与 AI 交叉领域论文与专利的

多维度分析，本文得出以下结论：

1）发文数量与专利申请方面：论文自 2019 年由

萌芽期跃迁至爆发期，且中国机构贡献了全球主要论文

产出；专利则表现为“厚积薄发”，2019 年前处于技

术储备阶段，随后因 AI 革新进入快速增长，中国申请

量稳居全球首位；

2）合作网络方面：论文合作方面，中国、美国、

巴西形成紧密合作，但中国机构跨国合作范围有限，本

土合作强度显著高于国际。专利合作情况，国内合作以

机构内部或地域邻近为主，跨国合作仅由 6 位国际专利

权人维系，缺乏系统性技术联盟；

3）研究主题及前沿态势方面：论文侧重算法、模

型的优化与创新，机器学习与深度学习在基因组选择与

遗传参数预测等基础领域占据主导，并向计算机视觉和

多模态数据融合等场景延伸；而专利开发则以技术集成

为导向，早期聚焦神经网络与遗传算法等底层技术，近

年已拓展至智能装备（如机器人、图像识别）与场景化

系统（养殖场管理与预警平台）。

尽管 AI 技术在基因组选择、多性状预测和精准育

表 3  TOP21 关键词突现情况

注：最后一列加粗黑色表示关键词在对应年份突现持续时间。

图 7  专利主题词聚类

关键词 年份 突现强度 突现开始年份 突现结束年份 2015—2025 年

information（信息） 2015 年 3.09 2015 年 2020 年 ▃▃▃▃▃▃▂▂▂▂▂

association（组合） 2015 年 2.70 2015 年 2017 年 ▃▃▃▂▂▂▂▂▂▂▂

accuracy（准确性） 2015 年 2.65 2015 年 2018 年 ▃▃▃▃▂▂▂▂▂▂▂

dairy cattle（奶牛） 2015 年 2.19 2015 年 2017 年 ▃▃▃▂▂▂▂▂▂▂▂

breeding value（育种值） 2015 年 2.06 2015 年 2020 年 ▃▃▃▃▃▃▂▂▂▂▂

algorithm（算法） 2015 年 1.81 2015 年 2016 年 ▃▃▂▂▂▂▂▂▂▂▂

growth（生长性状） 2017 年 3.06 2017 年 2019 年 ▂▂▃▃▃▂▂▂▂▂▂

genotype imputation（基因型估算） 2017 年 3.04 2017 年 2018 年 ▂▂▃▃▂▂▂▂▂▂▂

artificial neural network（人工神经网络） 2015 年 2.64 2017 年 2019 年 ▂▂▃▃▃▂▂▂▂▂▂

data mining（数据挖掘） 2017 年 2.62 2017 年 2019 年 ▂▂▃▃▃▂▂▂▂▂▂

model（模型） 2015 年 2.11 2017 年 2020 年 ▂▂▃▃▃▃▂▂▂▂▂

random forest（随机森林） 2018 年 3.75 2018 年 2021 年 ▂▂▂▃▃▃▃▂▂▂▂

cattle（牛） 2016 年 2.31 2021 年 2021 年 ▂▂▂▂▂▂▃▂▂▂▂

heritability（遗传性） 2022 年 2.71 2022 年 2022 年 ▂▂▂▂▂▂▂▃▂▂▂

body weight（体重） 2019 年 2.57 2022 年 2023 年 ▂▂▂▂▂▂▂▃▃▂▂

computer vision（计算机视觉） 2022 年 1.90 2022 年 2023 年 ▂▂▂▂▂▂▂▃▃▂▂

meat quality（肉质） 2021 年 2.97 2023 年 2023 年 ▂▂▂▂▂▂▂▂▃▂▂

feature selection（特征选择） 2020 年 2.36 2023 年 2023 年 ▂▂▂▂▂▂▂▂▃▂▂

support vector machine（支持向量机） 2023 年 2.14 2023 年 2023 年 ▂▂▂▂▂▂▂▂▃▂▂

artificial intelligence（人工智能） 2016 年 1.99 2023 年 2025 年 ▂▂▂▂▂▂▂▂▃▃▃

deep learning（深度学习） 2019 年 3.08 2024 年 2025 年 ▂▂▂▂▂▂▂▂▂▃▃
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种设计等领域取得了显著成果，但在模型可解释性、跨

群体泛化能力、小样本偏差以及数据标准化体系等方面

仍存在不足 [74]。目前已有一些基于机器学习、深度学

习和非接触式传感技术的多组学数据融合框架，但全流

程自动化的智能育种系统尚未完善，硬件兼容性和成本

效益也亟待提升。因此，未来研究应聚焦解决关键技术

瓶颈，构建理论突破与产业化落地协同发展的创新生态。

在方法层面，应重点深化模型可解释性和因果推断理论

研究，通过揭示基因与表型关联的生物学内在逻辑，提

高育种决策的科学可信度。同时，对于跨群体适用性不

足和小样本偏差等问题，需要探索领域自适应学习、迁

移学习及数据增强等策略，提升模型在不同遗传背景和

环境条件下的泛化能力。此外，为突破多源异构数据的

整合瓶颈，亟需建立统一的表型本体框架和数据标准，

构建开放共享的基准测试平台以促进技术迭代和方法验

证。在技术转化层面，需要推动多组学数据与视觉、时

空等信息的深度融合，研发兼具高预测精度和低计算负

载的轻量化算法，以平衡模型性能和实际部署约束。同

时应强化软硬件系统的兼容性设计，完善模块化测定与

验证流程，并通过典型示范场景的试点，推动辅助工具

升级为智能决策核心引擎，最终实现从算法创新到产业

化应用的衔接。

总之，该领域的发展在于实现跨学科知识与工程化

实践的深度结合，将基因组选择、精准育种设计与智能

图 9  专利主题词突现图谱

图 8  专利主题词演进
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化生产管理有机结合，为智慧畜牧业提供可持续的技术

支撑和创新动能。
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Research Trends in the Intersection of Animal Genetic Breeding 
and Artificial Intelligence: A Bibliometric Analysis 

WANG Ning1, ZHANG Bo2, ZHANG Hao2*

(1. Library of China Agricultural University, Beijing 100193, China; 
2. College of Animal Science and Technology, China Agricultural University, Beijing 100193, China)

Abstract: This study explores the research landscape at the intersection of artificial intelligence (AI) and animal genetic 
breeding, aiming to identify key academic and technological trends to provide a reference for future research. Utilizing 
bibliometric analysis, the study integrates data from SCIE-indexed journal articles and incoPat patents to examine annual 
output, institutional collaboration, and thematic evolution. VOSviewer, CiteSpace, and ITGInsight were employed to construct 
knowledge maps and identify thematic hotspots. Results indicate 2019 as a critical turning point with accelerated growth 
in publications and patents. China ranks first globally in both the number of publications and patent applications. However, 
collaboration patterns differ between literature and patents: academic research features international networks—primarily 
among China, the U.S., and Brazil—while patent activity is dominated by domestic institutions, with limited cross-border 
cooperation. Thematic analysis reveals that academic research focuses on the optimization of machine learning and deep 
learning models for trait prediction, genetic analysis, and genomic selection. Patents emphasize the integration of AI into 
intelligent management systems covering the full lifecycle of livestock production. Although AI has improved the accuracy 
and efficiency of animal breeding, challenges remain—namely, limited model generalizability, lack of standardized data, 
and hardware compatibility issues. Future efforts should prioritize multi-source data integration, lightweight algorithm 
development, and cross-scenario application to advance full-process automation and support the sustainable transformation of 
animal husbandry.
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